
Bridging the Physical
& Blockchain World
with Erlang.

By Andrew Thompson
Code BEAM SF 2018

Who am I?
• Writing Erlang since ~2008
• Wrote gen_smtp
• Wrote lager
• Survived Basho
• 4 year veteran of the IoT wars
• Blockchain skeptic

What this talk is NOT.
• Investment advice
• ‘Expert advice’ – please do your own research
• An ICO pitch
• An in-depth guide

What is a
Blockchain?
A blockchain is a way to forge
consensus given a set of
untrusted actors where up to
some proportion of the actors
are acting maliciously, have
crashed or are unavailable.

Blockchains are often, but not always
‘decentralized’; there’s not a central service/
database/arbiter. This can be a very useful property
if there’s concern the entity behind the service will
get acquired/shutdown or change its behaviour.
Decentralized systems also require a majority to
accept changes to the protocol or process.

Anatomy of
a Blockchain

Consensus Algorithm

Peer to Peer Network

Transactions

Blocks

Consensus.
Consensus is the way the
blockchain comes to agreement
if a transaction is valid, a block
is valid, a value is being
computed correctly, etc.

There are many ways different blockchains achieve
consensus with various tradeoffs around speed,
power consumption, what percentage of malicious
actors are tolerated, how ‘open’ the membership of
the system, etc.

Peer to Peer Network.
Every member of the
blockchain network needs
to communicate with other
members of the blockchain.
Isolated peers cannot
usefully participate in
consensus and can be
tricked into accepting or
generating invalid
transactions and blocks.

The modern internet is
hostile to peer-to-peer
applications; NATs,
firewalls, dodgy IPv6
deployments. Most
blockchains have
extensive support for
traversing challenging
network topologies.

Most peer-to-peer traffic
for a blockchain is not
encrypted (most
blockchains don’t rely on
secrecy) but is usually
authenticated with
cryptographic signatures,
or an equivalent.

Transactions.
Transactions are the operations against the shared state embodied in the
blockchain. When some actor wants to change the state of something in the
blockchain, they submit a transaction. This transaction can add data to the
blockchain, trigger code to be executed in the context of the blockchain
(smart contracts), change token balances, etc.

Blocks.
Blocks are like checkpoints; they encapsulate some amount of change to the
system (transactions), they have a total ordering and they’re tamper proof.
Changing any single block will invalidate any further blocks because they’re
cryptographically linked together.

Types of Consensus.
• PBFT derivatives – Ripple, Stellar, etc
• Nakamoto Consensus – Bitcoin, Ethereum (now), many others
• Proof of Stake – Ethereum (future), various others
• Many others (Filecoin, Factom, etc)

PBFT Based.
Practical Byzantine Fault
Tolerance – many
variations. Can have open
or closed membership.
Open membership is
subject to Sybil attacks,
so it may be combined
with other factors like
staking (Tendermint).

Closed PBFT replica sets
are often considered to be
centralized, because
someone or something is
gatekeeping membership.

In PBFT the client’s
transaction is sent to a
‘primary’ which broadcasts
the transaction to its
‘secondaries’, the
secondaries evaluate the
transaction against the
blockchain and return the
result to the client. If the
client sees more than N
agreeing replies, they know
it was accepted

Nakamoto Consensus.
Open membership, Sybil
attacks are defeated
because of the extremely
high compute
requirements.

Nakamoto consensus
works by computing some
hash over the block such
that the numerical value of
the hash falls under some
threshold. This threshold
adjusts regularly to try to
make it so new blocks can
only be computed every N
seconds.

Probably the easiest
consensus to implement but
also the most wasteful. The
proof-of-work has no value
outside its difficulty.

Proof of Stake.
Proof of Stake is where
actors possessing some
predetermined amount of
some asset (likely native
tokens) are trusted to
provide consensus.
Typically actors found
misbehaving lose some or
all of their stake.

Proof of Stake is an area
of intense research right
now because many
blockchains are struggling
with the limitations and
energy cost problems with
Nakamoto Consensus.

Proof of Stake blockchains
are just starting to come
online, they are relatively
untested compared to the
other approaches.

Why Erlang?
Most popular blockchains are written in
C++ or Go. Rust is also gaining
popularity. There are also (at least) 4
blockchains in Erlang: AEternity,
Arweave, Ercoin and soon one from
Helium (and people working on at least 3
of them are at this conference!). 👋

Erlang is memory-safe, fault-tolerant, has
pretty good cryptographic libraries and
has good tooling for building robust
services (Quickcheck, Dialyzer,
common_test/eunit, etc). There are also a
lot of useful libraries, and the current
ongoing blockchain work is adding more.

Libraries we’ve made:

• Erlang-libp2p
• Erlang-multihash
• Erlang-multiaddr
• ECC_compact
• Kdtree
• Merkerl
• BEAMCoin (now there’s at least 5 Erlang blockchains!)

github.com/helium

And now, for
something
mostly different.

What’s up
with the IoT?
The IoT has been a thing for a long time now, but it still hasn’t arrived. Why?

• Confusing morass of protocols and transports
• Vendor lock-in & hidden proprietary parts
• Tough to own your own data
• Tough to share infrastructure
• What happens if the vendor or network provider goes out of business?

We at Helium are sick 🤢  
of these problems.
What are we going to do about it? How do we build an open-
access network with reliable crowd-sourced gateways?

Design a new
consensus scheme
around ‘proof of
coverage’ that allows
gateway operators to
get paid for delivering
packets and providing
coverage.

Design a new radio
protocol from
scratch using
unpatented , widely
available modulation
and error-correction
schemes

Design a low-cost
software-defined
radio based
gateway and
open source the
hardware and
firmware

Design a reference
end-node
implementation
and open source
the hardware and
firmware

Much ado about Coverage.
To build a network of connected,
wireless devices, you need gateway
infrastructure. This infrastructure
should be reliable, ubiquitous and
accessible. Today we have several
wireless data providers; LoRaWAN
operators, Sigfox and the cellular
carriers.

Helium doesn’t consider these solutions
sufficient to answer the demands of the
market. Helium’s approach to delivering
a robust, scalable, public wireless IoT
network centers around the network
verifying its own integrity, incentivizing
useful coverage and responding to user
demand.

Proof of Coverage?
1. Verify a gateway is where it says it is
2. Verify a gateway is listening for radio packets
3. Verify a gateway can transmit packets

Verifying these 3 aspects of the
network give us a replacement for
hashpower in Nakamoto consensus.
Instead of considering compute power
as the scarce commodity, we use
location and the physical limits of radio
frequency (time of flight, bandwidth,
inverse square law) as our scarcity.

This allows us to build Sybil-attack
resistant identities for our blockchain.

How does it work?

A gateway (the
challenger) is
assigned (using
entropy from the
blockchain)
another gateway
to verify (the
target)

1
The challenger,
using the gateway
locations asserted
on the blockchain,
constructs a
regional view of the
network around the
target

2
The challenger then
constructs an ‘onion
routed’ challenge
packet that
traverses the
regional network,
intersecting with the
target at some point

3
Each gateway
decrypts a layer of
the onion,
broadcasts the next
layer and sends a
receipt (ToA, RSSI,
Hash) to the
challenger

4

What happens next?
Once the challenge
packet has terminated
(reached the final
gateway in the chain or
hit a routing gap) the
challenger assembles
the received receipts
into a Proof of
Coverage.

The Proof of
Coverage + a
Proof of Time
comprise the
Proof of Work.

All the blocks
published to the
network for that
block height are
ranked according
to the consensus
algorithm.

Each gateway mines
the next block on
top of the best
candidate for the
last height (a vote
for consensus
around that block).  

So what does that get us?
A self-verifying,
decentralized
network of
gateways fixed in
space and time.

Redundant
wireless coverage
with up-to-date
mapping and
status.

Wide area Time
Delay of Arrival
location services
for any basic
transmitter.

A way for the network to profit from its
usage (packet routing fees) and return it
to its maintainers (mining rewards/
transaction fees) and, as such, provide
for its own sustainability.

Cryptographic proof of
a packet’s context in
space and time (where/
when did this thing
happen).

How is this better than
Cellular/LoRa, etc.?
Everything is open;
no hidden patents,
licensing fees, etc

Hybrid coverage model:
seamless mix of user and
corporate deployments

Built-in Geolocation:
Native support for
device location

Cost Effective;
Prices are truly
competitive

Cryptographic proof of location:
Enables a whole new class  
of use cases

Watch this Space.
We have prototyped most of the components
of this system and are currently putting the
pieces together.

We will be publishing more details, source
code, hardware schematics and updates
soon, and on an ongoing basis.

Questions?
Please find me, or one of my
colleagues, afterwards for comments/
philosophical discussions.

@potsdamnhacker
andrew@helium.com

mailto:andrew@helium.com

