
Introduction Theory Design of Wrek Use Conclusion

Introducing Wrek
A Library For Executing Dependency Graphs

Richard Kallos

Samsung Ads Canada (formerly Adgear)

Code BEAM SF, March 2018
https://gitlab.com/rkallos/code-beam-2018/raw/

master/presentation.pdf

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

https://gitlab.com/rkallos/code-beam-2018/raw/master/presentation.pdf
https://gitlab.com/rkallos/code-beam-2018/raw/master/presentation.pdf

Introduction Theory Design of Wrek Use Conclusion

Table of Contents

1 Introduction

2 Theory
Parallelism
Dependency Graphs
Topological ordering

3 Design of Wrek
General
Specific

4 Use
Wrek @ $WORK
Erlang to the rescue!

5 Conclusion

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Table of Contents

1 Introduction

2 Theory
Parallelism
Dependency Graphs
Topological ordering

3 Design of Wrek
General
Specific

4 Use
Wrek @ $WORK
Erlang to the rescue!

5 Conclusion

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

What is wrek?

Wrek is a library for executing task dependency graphs.

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

What is wrek?

Given a graph like:

Wrek executes tasks in topological order

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

What is wrek?

Given a graph like:

Wrek executes tasks in topological order

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

What is wrek?

Given a graph like:

Wrek executes tasks in topological order

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

What is wrek?

Given a graph like:

Wrek executes tasks in topological order

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Table of Contents

1 Introduction

2 Theory
Parallelism
Dependency Graphs
Topological ordering

3 Design of Wrek
General
Specific

4 Use
Wrek @ $WORK
Erlang to the rescue!

5 Conclusion

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Parallelism

There are many kinds of parallelism in computing.

Two kinds of parallelism that are often mentioned together are:

Data parallelism: Splitting data across processors
Task parallelism: Splitting tasks across processors

These two forms can be (and are) used together!
e.g. Image processing consists of pipelines of data-parallel tasks

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Parallelism

There are many kinds of parallelism in computing.
Two kinds of parallelism that are often mentioned together are:

Data parallelism: Splitting data across processors
Task parallelism: Splitting tasks across processors

These two forms can be (and are) used together!
e.g. Image processing consists of pipelines of data-parallel tasks

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Parallelism

There are many kinds of parallelism in computing.
Two kinds of parallelism that are often mentioned together are:

Data parallelism: Splitting data across processors

Task parallelism: Splitting tasks across processors

These two forms can be (and are) used together!
e.g. Image processing consists of pipelines of data-parallel tasks

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Parallelism

There are many kinds of parallelism in computing.
Two kinds of parallelism that are often mentioned together are:

Data parallelism: Splitting data across processors
Task parallelism: Splitting tasks across processors

These two forms can be (and are) used together!
e.g. Image processing consists of pipelines of data-parallel tasks

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Parallelism

There are many kinds of parallelism in computing.
Two kinds of parallelism that are often mentioned together are:

Data parallelism: Splitting data across processors
Task parallelism: Splitting tasks across processors

These two forms can be (and are) used together!

e.g. Image processing consists of pipelines of data-parallel tasks

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Parallelism

There are many kinds of parallelism in computing.
Two kinds of parallelism that are often mentioned together are:

Data parallelism: Splitting data across processors
Task parallelism: Splitting tasks across processors

These two forms can be (and are) used together!
e.g. Image processing consists of pipelines of data-parallel tasks

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Dependency Graphs

A dependency graph is a directed acyclic graph (DAG) whose
edges model a dependency relation between vertices.

An edge (a, b) in a dependency graph means
“a depends on b”.
An edge (b, a) in the transpose of the graph means
“b is a dependency of a”
Vertices with no paths connecting them can execute
concurrently

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Dependency Graphs

A dependency graph is a directed acyclic graph (DAG) whose
edges model a dependency relation between vertices.
An edge (a, b) in a dependency graph means
“a depends on b”.

An edge (b, a) in the transpose of the graph means
“b is a dependency of a”
Vertices with no paths connecting them can execute
concurrently

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Dependency Graphs

A dependency graph is a directed acyclic graph (DAG) whose
edges model a dependency relation between vertices.
An edge (a, b) in a dependency graph means
“a depends on b”.
An edge (b, a) in the transpose of the graph means
“b is a dependency of a”

Vertices with no paths connecting them can execute
concurrently

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Dependency Graphs

A dependency graph is a directed acyclic graph (DAG) whose
edges model a dependency relation between vertices.
An edge (a, b) in a dependency graph means
“a depends on b”.
An edge (b, a) in the transpose of the graph means
“b is a dependency of a”
Vertices with no paths connecting them can execute
concurrently

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Dependency Graphs

Here is a dependency Graph...

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Dependency Graphs

... and its transpose

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Dependency Graphs

In addition to being widespread in computing, dependency graphs
are also used by humans!

Many of the lists we make are topological orderings of
dependency graphs
e.g. to-do lists, cooking recipes, checklists
e.g. 1. Foo the bar. 2. Baz the foo’d bar...

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Dependency Graphs

In addition to being widespread in computing, dependency graphs
are also used by humans!

Many of the lists we make are topological orderings of
dependency graphs
e.g. to-do lists, cooking recipes, checklists
e.g. 1. Foo the bar. 2. Baz the foo’d bar...

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Dependency Graphs

Cooking recipes are topological orderings of dependency graphs.

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Topological ordering

Topological ordering: For every edge (u, v), u comes before v.

A topological ordering of a dependency graph is a valid
evaluation order.
e.g. [boil water, chop vegetables, add pasta, purée tomatoes,
add spices, ...]
Topo-sorting dependency graphs discards information about
possible concurrency

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Topological ordering

Topological ordering: For every edge (u, v), u comes before v.
A topological ordering of a dependency graph is a valid
evaluation order.

e.g. [boil water, chop vegetables, add pasta, purée tomatoes,
add spices, ...]
Topo-sorting dependency graphs discards information about
possible concurrency

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Topological ordering

Topological ordering: For every edge (u, v), u comes before v.
A topological ordering of a dependency graph is a valid
evaluation order.
e.g. [boil water, chop vegetables, add pasta, purée tomatoes,
add spices, ...]

Topo-sorting dependency graphs discards information about
possible concurrency

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Topological ordering

Topological ordering: For every edge (u, v), u comes before v.
A topological ordering of a dependency graph is a valid
evaluation order.
e.g. [boil water, chop vegetables, add pasta, purée tomatoes,
add spices, ...]
Topo-sorting dependency graphs discards information about
possible concurrency

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

A Thought

What if we could write arbitrary code as dependency graphs and
have them execute with maximum concurrency?

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Table of Contents

1 Introduction

2 Theory
Parallelism
Dependency Graphs
Topological ordering

3 Design of Wrek
General
Specific

4 Use
Wrek @ $WORK
Erlang to the rescue!

5 Conclusion

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Design of Wrek

OTP behaviours let library/application developers separate
the general from the specific

General: Executing dependency graphs in proper order
Specific: The structure of dependency graphs
Specific: Executing single vertices

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Design of Wrek

OTP behaviours let library/application developers separate
the general from the specific
General: Executing dependency graphs in proper order

Specific: The structure of dependency graphs
Specific: Executing single vertices

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Design of Wrek

OTP behaviours let library/application developers separate
the general from the specific
General: Executing dependency graphs in proper order
Specific: The structure of dependency graphs

Specific: Executing single vertices

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Design of Wrek

OTP behaviours let library/application developers separate
the general from the specific
General: Executing dependency graphs in proper order
Specific: The structure of dependency graphs
Specific: Executing single vertices

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

General

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

General

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Specific

-module(wrek_vert).

-callback run(Args :: list(), Parent :: pid()) ->
{ok, Result :: any()} | {error, Reason :: any()}.

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Specific

-type dag_map() :: #{any() := vert_defn()} |
[{any(), vert_defn()}].

-type vert_defn() :: #{
module := module(),
args := list(),
deps := list()

}.

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

What happens when you call wrek:start/2

The supplied map is read into a digraph:graph()

All vertices with no queued or running dependencies are
spawn linked
Values returned from vertices are stored in labels for use by
later vertices via wrek vert:get/3

Calls gen event:notify/2 with #wrek event{} records to
an optional gen event process
If wrek vert:Module:run/2 returns an error or throws an
exception, the crash propagates to the rest of the graph.

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

What happens when you call wrek:start/2

The supplied map is read into a digraph:graph()

All vertices with no queued or running dependencies are
spawn linked

Values returned from vertices are stored in labels for use by
later vertices via wrek vert:get/3

Calls gen event:notify/2 with #wrek event{} records to
an optional gen event process
If wrek vert:Module:run/2 returns an error or throws an
exception, the crash propagates to the rest of the graph.

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

What happens when you call wrek:start/2

The supplied map is read into a digraph:graph()

All vertices with no queued or running dependencies are
spawn linked
Values returned from vertices are stored in labels for use by
later vertices via wrek vert:get/3

Calls gen event:notify/2 with #wrek event{} records to
an optional gen event process
If wrek vert:Module:run/2 returns an error or throws an
exception, the crash propagates to the rest of the graph.

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

What happens when you call wrek:start/2

The supplied map is read into a digraph:graph()

All vertices with no queued or running dependencies are
spawn linked
Values returned from vertices are stored in labels for use by
later vertices via wrek vert:get/3

Calls gen event:notify/2 with #wrek event{} records to
an optional gen event process

If wrek vert:Module:run/2 returns an error or throws an
exception, the crash propagates to the rest of the graph.

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

What happens when you call wrek:start/2

The supplied map is read into a digraph:graph()

All vertices with no queued or running dependencies are
spawn linked
Values returned from vertices are stored in labels for use by
later vertices via wrek vert:get/3

Calls gen event:notify/2 with #wrek event{} records to
an optional gen event process
If wrek vert:Module:run/2 returns an error or throws an
exception, the crash propagates to the rest of the graph.

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Table of Contents

1 Introduction

2 Theory
Parallelism
Dependency Graphs
Topological ordering

3 Design of Wrek
General
Specific

4 Use
Wrek @ $WORK
Erlang to the rescue!

5 Conclusion

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Wrek @ $WORK

Our edge servers (bidders) were all wasting a CPU core doing
the same calculation

Solution: Do the calculation off the edge, and ship the result
Version 1 was implemented with...

cron and bash

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Wrek @ $WORK

Our edge servers (bidders) were all wasting a CPU core doing
the same calculation
Solution: Do the calculation off the edge, and ship the result

Version 1 was implemented with...

cron and bash

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Wrek @ $WORK

Our edge servers (bidders) were all wasting a CPU core doing
the same calculation
Solution: Do the calculation off the edge, and ship the result
Version 1 was implemented with...

cron and bash

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Wrek @ $WORK

Our edge servers (bidders) were all wasting a CPU core doing
the same calculation
Solution: Do the calculation off the edge, and ship the result
Version 1 was implemented with...cron and bash

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Wrek @ $WORK

Version 1 mostly worked, but we realized this offered
opportunities to take pressure off services on other servers

If we are going to extend this new system, it would be better
to create a more robust framework
Enter Erlang!

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Wrek @ $WORK

Version 1 mostly worked, but we realized this offered
opportunities to take pressure off services on other servers
If we are going to extend this new system, it would be better
to create a more robust framework

Enter Erlang!

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Wrek @ $WORK

Version 1 mostly worked, but we realized this offered
opportunities to take pressure off services on other servers
If we are going to extend this new system, it would be better
to create a more robust framework
Enter Erlang!

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Erlang to the rescue!

In order to iterate quickly, it made sense to have a library that
could

Run Erlang callbacks
Run our already-existing shell scripts (secretly topological
orderings of dependency graphs)

Wrek was the result

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Erlang to the rescue!

In order to iterate quickly, it made sense to have a library that
could

Run Erlang callbacks

Run our already-existing shell scripts (secretly topological
orderings of dependency graphs)

Wrek was the result

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Erlang to the rescue!

In order to iterate quickly, it made sense to have a library that
could

Run Erlang callbacks
Run our already-existing shell scripts (secretly topological
orderings of dependency graphs)

Wrek was the result

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Erlang to the rescue!

In order to iterate quickly, it made sense to have a library that
could

Run Erlang callbacks
Run our already-existing shell scripts (secretly topological
orderings of dependency graphs)

Wrek was the result

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Erlang to the rescue!

Wrek was able to easily slurp our existing scripts (thanks to
erlexec)

This allowed for piecemeal replacement of large-ish scripts
with dependency graphs of smaller scripts and Erlang callbacks
This offered better concurrency and (much) more information
for logging/monitoring

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Erlang to the rescue!

Wrek was able to easily slurp our existing scripts (thanks to
erlexec)
This allowed for piecemeal replacement of large-ish scripts
with dependency graphs of smaller scripts and Erlang callbacks

This offered better concurrency and (much) more information
for logging/monitoring

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Erlang to the rescue!

Wrek was able to easily slurp our existing scripts (thanks to
erlexec)
This allowed for piecemeal replacement of large-ish scripts
with dependency graphs of smaller scripts and Erlang callbacks
This offered better concurrency and (much) more information
for logging/monitoring

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Erlang to the rescue!

Thanks to Erlang/OTP, we are flexible to handle events generated
by Wrek

Exposing status of executing graphs via a HTTP endpoint
Establishing contracts between on- and off-edge servers

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Erlang to the rescue!

Thanks to Erlang/OTP, we are flexible to handle events generated
by Wrek

Exposing status of executing graphs via a HTTP endpoint

Establishing contracts between on- and off-edge servers

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Erlang to the rescue!

Thanks to Erlang/OTP, we are flexible to handle events generated
by Wrek

Exposing status of executing graphs via a HTTP endpoint
Establishing contracts between on- and off-edge servers

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Table of Contents

1 Introduction

2 Theory
Parallelism
Dependency Graphs
Topological ordering

3 Design of Wrek
General
Specific

4 Use
Wrek @ $WORK
Erlang to the rescue!

5 Conclusion

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Conclusion

Dependency graphs are useful for exposing opportunities for
concurrency

Dependency graphs show up all over the place, in computing
and in everyday life
Wrek is an application that executes dependency graphs
Erlang/OTP has been instrumental in letting us build and ship
quickly, and start paying down our shell-script technical debt
Big thanks to digraph and erlexec; they do the heavy
lifting.

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Conclusion

Dependency graphs are useful for exposing opportunities for
concurrency
Dependency graphs show up all over the place, in computing
and in everyday life

Wrek is an application that executes dependency graphs
Erlang/OTP has been instrumental in letting us build and ship
quickly, and start paying down our shell-script technical debt
Big thanks to digraph and erlexec; they do the heavy
lifting.

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Conclusion

Dependency graphs are useful for exposing opportunities for
concurrency
Dependency graphs show up all over the place, in computing
and in everyday life
Wrek is an application that executes dependency graphs

Erlang/OTP has been instrumental in letting us build and ship
quickly, and start paying down our shell-script technical debt
Big thanks to digraph and erlexec; they do the heavy
lifting.

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Conclusion

Dependency graphs are useful for exposing opportunities for
concurrency
Dependency graphs show up all over the place, in computing
and in everyday life
Wrek is an application that executes dependency graphs
Erlang/OTP has been instrumental in letting us build and ship
quickly, and start paying down our shell-script technical debt

Big thanks to digraph and erlexec; they do the heavy
lifting.

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Conclusion

Dependency graphs are useful for exposing opportunities for
concurrency
Dependency graphs show up all over the place, in computing
and in everyday life
Wrek is an application that executes dependency graphs
Erlang/OTP has been instrumental in letting us build and ship
quickly, and start paying down our shell-script technical debt
Big thanks to digraph and erlexec; they do the heavy
lifting.

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Conclusion

If you

Enjoy thinking about larger tasks being composed of
dependency graphs of smaller tasks (Try it! It’s fun!)
Want to incrementally replace a mess of shell scripts with
smaller, more concurrent ones (or Erlang code)

then you might enjoy Wrek!

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Conclusion

If you
Enjoy thinking about larger tasks being composed of
dependency graphs of smaller tasks (Try it! It’s fun!)

Want to incrementally replace a mess of shell scripts with
smaller, more concurrent ones (or Erlang code)

then you might enjoy Wrek!

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Conclusion

If you
Enjoy thinking about larger tasks being composed of
dependency graphs of smaller tasks (Try it! It’s fun!)
Want to incrementally replace a mess of shell scripts with
smaller, more concurrent ones (or Erlang code)

then you might enjoy Wrek!

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Conclusion

If you
Enjoy thinking about larger tasks being composed of
dependency graphs of smaller tasks (Try it! It’s fun!)
Want to incrementally replace a mess of shell scripts with
smaller, more concurrent ones (or Erlang code)

then you might enjoy Wrek!

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

Introduction Theory Design of Wrek Use Conclusion

Conclusion

http://github.com/rkallos/wrek

http://github.com/saleyn/erlexec

http://erlang.org/doc/man/digraph.html

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

http://github.com/rkallos/wrek
http://github.com/saleyn/erlexec
http://erlang.org/doc/man/digraph.html

Introduction Theory Design of Wrek Use Conclusion

Conclusion

Thank you!

Richard Kallos Samsung Ads Canada (formerly Adgear)
Introducing Wrek

	Introduction
	Theory
	Design of Wrek
	Use
	Conclusion

