
The BEAM Programming Paradigm *

Kenji Rikitake | @jj1bdx
#CodeBEAMSTO 2019

* ... Or how I've been struggling to understand the well-designed ideas behind the Erlang/OTP, Elixir, and other
BEAM languages and systems, while I sCll have a very hard Cme to learn "object-oriented" programming languages

#CodeBEAMSTO 2019 / Kenji Rikitake 1

Kenji Rikitake
17-MAY-2019
Code Beam STO 2019
Stockholm, Sweden
@jj1bdx

#CodeBEAMSTO 2019 / Kenji Rikitake 2

Programming paradigm?

What is that?

Is it about a programming paradise?

#CodeBEAMSTO 2019 / Kenji Rikitake 3

Paradigm = pa+ern + worldview 1

• A typical example or pa0ern of something; a model

• A worldview underlying the theories and methodology of a
par;cular scien;fic subject

1 New Oxford American Dic3onary, macOS 10.14.4

#CodeBEAMSTO 2019 / Kenji Rikitake 4

Programming paradigm, shown in Wikipedia

Programming paradigms are a way to classify programming
languages based on their features.

— Wikipedia

#CodeBEAMSTO 2019 / Kenji Rikitake 5

https://en.wikipedia.org/wiki/Programming_paradigm

Languages -> paradigms -> concepts

• Many languages belong to one paradigm

• A languages may have many paradigms available

• A paradigm may have many concepts

Peter Van Roy states there are 27 different programming paradigms 2

2 Peter Van Roy: Programming Paradigms for Dummies: What Every Programmer Should Know, 2009, SecBon 2

#CodeBEAMSTO 2019 / Kenji Rikitake 6

https://www.info.ucl.ac.be/~pvr/paradigms.html

Programming paradigm:
Language pa)erns, worldview, and features

Simplified characteris0cs of the features

Design philosophy

#CodeBEAMSTO 2019 / Kenji Rikitake 7

Then what is the BEAM
Programming Paradigm?

#CodeBEAMSTO 2019 / Kenji Rikitake 8

The philosophy of the BEAM
languages/systems:

Lagom
#CodeBEAMSTO 2019 / Kenji Rikitake 9

Lagom: not too much, not too li0le, just right
Lagom är bäst

Just the right amount is best / enough is as good as a feast 3

3 Wiki&onary entry of "Lagom är bäst"

#CodeBEAMSTO 2019 / Kenji Rikitake 10

https://en.wiktionary.org/w/index.php?title=lagom_%C3%A4r_b%C3%A4st&oldid=44679439

Lagom in philosophy
中庸 / Zhōngyōng, Chu-yaw

Confucianism: Doctrine of the Mean

μεσότης / mesotes

Aristotle: Golden Mean

#CodeBEAMSTO 2019 / Kenji Rikitake 11

Quote from Programming Erlang 4

4 Joe Armstrong, "Programming Erlang", Second Edi7on, Pragma7c Bookshelf, 2013, Sec7on 26.3, "Parallelizing
Sequen7al Code"

#CodeBEAMSTO 2019 / Kenji Rikitake 12

https://pragprog.com/book/jaerlang2/programming-erlang

Computer is as greedy as people: an3-lagom

• People want fast ac-ons: more speed in less -me

• Speed-first programming: cu9ng corners, less secure

• People want more features (really?)

• Feature bloat: bloatware, soBware inefficiency

• Less stable, safe, and secure soBware

#CodeBEAMSTO 2019 / Kenji Rikitake 13

Lagom: accuracy transcends speed

• Safety transcends speed

• Simplicity transcends rich features

• Stability transcends convenience

... these targets are more easily actualized by thinking a bit about
how lagom your so7ware is

... and these are the phisolophy of the BEAM programming paradigm

#CodeBEAMSTO 2019 / Kenji Rikitake 14

Erlang's programming paradigms 5

• Func&onal programming

• Message-passing concurrent programming

• Mul&-agent programming (Erlang processes)

• Some shared states (Process dic&onaries, ETS, Mnesia)

5 Peter Van Roy: Programming Paradigms for Dummies: What Every Programmer Should Know, 2009, Figure 2
(Taxonomy of programming paradigms) and Table 1 (Layered structure of a definiMve programming language)

#CodeBEAMSTO 2019 / Kenji Rikitake 15

https://www.info.ucl.ac.be/~pvr/paradigms.html

A hidden BEAM programming paradigm and
design: safety first, speed second 6

• Strong enforcement of immutability

• deep-copied variables, no references

• ... Programmers s;ll can write dangerous code if needed

6 Kenji Rikitake, Erlang and Elixir Fest 2018 Keynote Presenta<on, 16-JUN-2018, Tokyo, Japan

#CodeBEAMSTO 2019 / Kenji Rikitake 16

https://speakerdeck.com/jj1bdx/erlang-and-elixir-fest-2018-keynote

Immutability 7

• Once the value is stored, it cannot be changed

• No mutable variables on either Erlang or Elixir, unless explicitly
stated as an external func1on (e.g., ETS) or processes

• Immutability makes debugging easier because all stored values of
created objects during ac>ons remain untouched

7 José Valim, Comparing Elixir and Erlang variables, Plataformatec blog, January 12, 2016

#CodeBEAMSTO 2019 / Kenji Rikitake 17

http://blog.plataformatec.com.br/2016/01/comparing-elixir-and-erlang-variables/

Variable binding strategies between Erlang
and Elixir differs with each other

• Erlang: single binding only, with implicit pa8ern matching

• Elixir: mul;ple binding allowed as default, pa8ern matching
enforceable with the pin (^) operator

#CodeBEAMSTO 2019 / Kenji Rikitake 18

Erlang enforces single binding variables

1> A = 10.
10
2> A = 20.
** exception error: no match of right hand side value 20
% Each variable can only be bound *once and only once*
3> B = [1, 2].
[1,2]
4> [_, X] = B, X.
2 % Bindings are equivalent to the pattern matching

#CodeBEAMSTO 2019 / Kenji Rikitake 19

Advantages of Erlang's single-binding variables

• Debugging gets easier: once a variable is bound, it doesn't
change un7l the func7on exits

• The meaning a<ached to every variable must be clearly defined,
because no shared meaning is allowed

#CodeBEAMSTO 2019 / Kenji Rikitake 20

Erlang's ambiguity on case expression (1)

case an_expr() of
 % S is bound to an_expr()'s result
 {ok, S} -> do_when_matched();
 _ -> do_when_unmatched()
end

#CodeBEAMSTO 2019 / Kenji Rikitake 21

Erlang's ambiguity on case expression (2)

S = something, % newly added
case an_expr() of
 % an_expr()'s result is pattern-matched implicitly
 % to the result of previous S instead
 {ok, S} -> do_when_matched();
 _ -> do_when_unmatched()
end

#CodeBEAMSTO 2019 / Kenji Rikitake 22

Elixir allows variable rebinding 8

iex(1)> a = 10
10
iex(2)> a = 20
20 # a is rebound
pin operator forces pattern matching without rebinding
iex(3)> ^a = 40
** (MatchError) no match of right hand side value: 40

8 Stack Overflow: What is the “pin” operator for, and are Elixir variables mutable?

#CodeBEAMSTO 2019 / Kenji Rikitake 23

https://stackoverflow.com/a/27975233/417862

Advantages of Elixir's mul5ple binding

• Aligning well with the default behavior of many other languages

• Pa8ern-matching is explicitly controllable to remove ambiguity,
e.g. for case expressions

#CodeBEAMSTO 2019 / Kenji Rikitake 24

Elixir on case expression (1)

s = :a_previous_value
case an_expr() do
 # s is bound to an_expr()'s result anyway
 {:ok, s} -> do_when_matched()
 _ -> do_when_unmatched()
end

#CodeBEAMSTO 2019 / Kenji Rikitake 25

Elixir on case expression (2)

s = :a_previous_value
case an_expr() do
 # an_expr()'s result is explicitly pattern-matched
 # with the content of s (:a_previous_value)
 # by the pin operator before s
 {:ok, ^s} -> do_when_matched()
 _ -> do_when_unmatched()
end

#CodeBEAMSTO 2019 / Kenji Rikitake 26

Erlang's deep-copied variables

1> A = 10, B = [A, 30].
[10,30]
2> f(A), A. % f(A): unbind A
* 1: variable 'A' is unbound
3> B.
[10,30] # old A remains in B

#CodeBEAMSTO 2019 / Kenji Rikitake 27

Elixir's deep-copied variables

iex(1)> a = 10; b = [a, 30]
[10, 30]
iex(2)> a = 20; [a, b]
[20, [10, 30]] # old a remains in b

#CodeBEAMSTO 2019 / Kenji Rikitake 28

Advantage of deep-copied variables

• Immutable, by always crea1ng new object bodies for copying

• The same copy seman1cs is applied regardless of the data types,
especially between simple (integers, atoms) and structured (lists,
tuples, maps) types

#CodeBEAMSTO 2019 / Kenji Rikitake 29

Disadvantages of shared-nothing / deep-
copied variables

• Slow: all assignments imply deep copying

• Much more memory space: you cannot implicitly share

... Are they really disadvantages at the age of abundant processing
power and memory space?

#CodeBEAMSTO 2019 / Kenji Rikitake 30

Many of programming languages
work in different ways as default

Variables are not necessarily immutable
Copy seman+cs differ between different data types

#CodeBEAMSTO 2019 / Kenji Rikitake 31

LISP is not necessarily immutable, even it's a
func8onal language 9

(defparameter *some-list* (list 'one 'two 'three 'four))
(rplaca *some-list* 'uno)
(rplacd (last *some-list*) 'not-nil)
; result by CLISP 2.49
(ONE TWO THREE FOUR) ; original
(UNO TWO THREE FOUR) ; head replaced
(UNO TWO THREE FOUR . NOT-NIL) ; tail replaced

9 Source code example from Hyperspec Web site, modified by Kenji Rikitake, run on Wandbox with CLISP 2.49

#CodeBEAMSTO 2019 / Kenji Rikitake 32

http://clhs.lisp.se/Body/f_rplaca.htm
https://wandbox.org/#
https://clisp.sourceforge.io/

JavaScript has a complicated copy seman4cs

// var a = {first: 1, second: 2}
// b = a // only sharing *references*
{ first: 1, second: 2 }
// a.second = 3
3
// b // changing a also changes b
{ first: 1, second: 3 }
// b == { first: 1, second: 3 }
false // WHY?
// The right-hand side is a *constructor*

#CodeBEAMSTO 2019 / Kenji Rikitake 33

C# also has a complicated copy seman2cs

Type int is value copied, List is reference copied (why??)

using System.Collections.Generic;
int i = 100; List<int> a = new List<int>(){10, 20};
MutableMethod(i, a);
void MutableMethod(int i, List<int> a) {
 i = 200; a.Add(30); }

Result: i = 100, a = {10, 20, 30}

#CodeBEAMSTO 2019 / Kenji Rikitake 34

C++: can you tell the difference?
double func(std::vector<double> x);
double func(std::vector<double> &v); // with reference
double func(std::unique_ptr<std::vector<double>> u);
double func(std::shared_ptr<std::vector<double>> s);

std::vector<double> y = x;
std::vector<double> &w = v; // with reference
std::unique_ptr<std::vector<double>> u2 = std::move(u);
// You cannot -> std::unique_ptr<std::vector<double>> u3 = u;

... actually, I'm not sure I can accurately explain the difference.

#CodeBEAMSTO 2019 / Kenji Rikitake 35

These languages perplex me by: 10

• Different ac,ons for different data types

• Constructors (and destructors)

• Copy seman,cs (C#: value type, reference type)

• Shallow-copied objects = no immutability

• Shared state and references as default

10 Rikitake, K.: Shared Nothing Secure Programming in Erlang/OTP, IEICE Technical Report IA2014-11/ICSS2014-11,
Vol. 114, No. 70, pp. 55--60 (2014). (Slide PDF)

#CodeBEAMSTO 2019 / Kenji Rikitake 36

https://speakerdeck.com/jj1bdx/otp

Design of these languages

• Avoid object copying

• Crea4on of objects need explicit ac4ons

• Explicit use of reference

• Object isola4on is the programmer's responsibility

... mostly for speed and cu2ng corners

#CodeBEAMSTO 2019 / Kenji Rikitake 37

What BEAM languages provide

• Same ac(ons for all data types

• No need for explicit constructors/destructors

• Single copy seman(cs (deep copy)

• Deep copied objects = immutability

• No shared state, no reference, as default

#CodeBEAMSTO 2019 / Kenji Rikitake 38

Design of BEAM languages

• Deep-copying as default

• New objects are always created by assignments

• Prohibit use of reference

• Object isola=on is the language's responsibility

... for security first, and lagom speed second

#CodeBEAMSTO 2019 / Kenji Rikitake 39

The BEAM Programming Paradigm difference
from the popularly-used shared-state object-oriented languages:

Choice of default data copying mode
By choosing lagom speed traded in for much more secure programming

#CodeBEAMSTO 2019 / Kenji Rikitake 40

#CodeBEAMSTO 2019 / Kenji Rikitake 41

Shared state .vs. distributed state:

Which model is safer?

Which model is more secure?

Which model causes less bugs?

#CodeBEAMSTO 2019 / Kenji Rikitake 42

Topics excluded from this talk

• BEAM architecture 11

• Concurrency models

• Process supervision and signals

• How BEAM languages handle shared states

11 Erik Stemman, The Beam Book

#CodeBEAMSTO 2019 / Kenji Rikitake 43

https://blog.stenmans.org/theBeamBook/

Acknowledgment

This presenta,on is suppored by
Pepabo R&D Ins,tute, GMO Pepabo, Inc.

Thanks to Code BEAM Crew and Erlang
Solu7ons!

... and thank you for being here!

#CodeBEAMSTO 2019 / Kenji Rikitake 44

Thanks, Joe.

You taught me how to program in the
principle of lagom är bäst.

You helped me finding out a new hope for
programming, a5er I got lost in the C
header files of ISC BIND 9.4.2 in 2007.

I'm impressed by your hospitality, as well
as your crea6ve mind.

We will remember you.

#CodeBEAMSTO 2019 / Kenji Rikitake 45

Thank you
Ques%ons?
#CodeBEAMSTO 2019 / Kenji Rikitake 46

Photo / graphics credits
• Title: Photo by Masayoshi Yamase on Unsplash

• Lagom: Photo by Jen P. on Unsplash

• Programming Erlang quote: from Pragma?c Bookshelf's EPUB ebook rendered by iBooks
on macOS 10.14.4, underline added by Kenji Rikitake

• Joe Armstrong: Photo by Brian L. Troutwine, edited by Kenji Rikitake, licensed CC BY-NC
4.0 Interna?onal

• Pepabo R&D Ins?tute Logo: GMO Pepabo, Inc.

• Thank you page: Photo by Raphael Andres on Unsplash

• All the other photos: Kenji Rikitake

#CodeBEAMSTO 2019 / Kenji Rikitake 47

https://unsplash.com/photos/peAbdH4O8GM
https://unsplash.com/@myana
https://unsplash.com/photos/_EiuAQtkyKo
https://unsplash.com/@talesbyjen
https://www.dropbox.com/sh/18w4l9vbmgu98ov/AAAiTRknnIBbJAOEmn72INRfa?dl=0
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://unsplash.com/photos/3cwvFD-YPtk
https://unsplash.com/@raphaeldas

