
BEAM on the Edge
Innovation Through Problem Solving

Robert Virding
Frank Hunleth

Robert Virding
Erlang on the Edge

#CodeBEAMSF

The Problem

● Ericsson’s “best seller” AXE
telephone exchanges (switches)
required large efforts to develop
and maintain software.

● The problem for the CSLab to solve
was how to make programming
these types of applications easier,
but keeping the same
characteristics.

www.erlang-solutions.com

#CodeBEAMSF

The problem domain

● Handling of very large numbers of concurrent activities

● Actions to be performed at a certain point in time or within a certain time

● System distributed over several computers

● Continuous operation over many years

● Software maintenance (reconfiguration, etc.) without stopping the system

● Fault tolerance both to hardware failures and software errors

Bjarne Däcker, November 2000 - Licentiate Thesis

Not just telecom

#CodeBEAMSF

Internal development

● Many threads at the same time
● Understanding the problem domain
● Designing language and architecture which could be used in these systems
● Testing with our idea of how these systems should perform

Thinking/ideas Experiments

#CodeBEAMSF

The real world

● We worked together with another project in Ericsson (ACS/Dunder) who
tested our ideas and gave a lot of very good feedback.

● This allowed us to rethink and come with new ideas for which we then got
feedback.

● They were the first users of Erlang in a real product.

Internal development The real world

#CodeBEAMSF

The solution: first principles

● Lightweight concurrency
○ Must handle a large number of processes
○ Process creation, context switching and inter-process communication must be cheap and

fast.
● Asynchronous communication
● Process isolation

○ What happens in one process must not affect any other process.
● Error handling

○ The system must be able to detect and handle errors.
● Continuous evolution of the system

○ We want to upgrade the system while running and with no loss of service.
● Soft real-time, non-blocking

#CodeBEAMSF

The solution: first principles

Also
● High level language to get real benefits.
● The language/system should be simple

○ Simple in the sense that there should be a small number of basic principles, if these are right
then the language will be powerful but easy to comprehend and use. Small is good.

○ The language should be simple to understand and program.

● Provide tools for building systems, not solutions
○ We would provide the basic operations needed for building communication protocols and error

handling

#CodeBEAMSF

The language: sequential

● Simple functional language
○ With a “different” syntax

● Typical features of functional languages
○ Immutable data
○ Immutable variables
○ Extensive use of pattern matching
○ Recursion rules!

● Dynamically typed!
● No user defined data-types!

#CodeBEAMSF

The language: concurrency

● Light-weight isolated processes
○ Millions of Erlang processes possible on one machine

● Asynchronous message passing
○ Only method of communication between processes
○ Necessary for non-blocking systems
○ Provide basic mechanism
○ Very cheap

● Selective receive mechanism
○ Allows us to ignore messages which are uninteresting now

● NO GLOBAL DATA!

#CodeBEAMSF

The language: error handling

● Links
● Exit signals

○ Kill processes

● Trapping errors
○ Allow using links to monitor processes

#CodeBEAMSF

The language: trivial code example
ringing_a_side(Addr, B_Pid, B_Addr) ->
 receive
 on_hook ->
 B_Pid ! cleared,
 tele_os:stop_tone(Addr),
 idle(Addr);
 answered ->
 tele_os:stop_tone(Addr),
 tele_os:connect(Addr, B_Addr),
 speech(Addr, B_Pid, B_Addr);
 {seize,Pid} ->
 Pid ! rejected,
 ringing_a_side(Addr, B_Pid, B_Addr);
 _ ->
 ringing_a_side(Addr, B_Pid, B_Addr)
 end.

ringing_b_side(Addr, A_Pid) ->
 Receive
 cleared ->
 tele_os:stop_ring(Addr),
 idle(Addr);
 off_hook ->
 tele_os:stop_ring(Addr),
 A_Pid ! answered,
 speech(Addr, A_Pid, not_used);
 {seize,Pid} ->
 Pid ! rejected,
 ringing_b_side(Addr, A_Pid);
 _ ->
 ringing_b_side(Addr, A_Pid)
 end.

Frank Hunleth
Embedded systems on the Edge

Erlang Factory 2014

#CodeBEAMSF

IIoT

"The Industrial Internet of Things is the use of smart sensors
and actuators to enhance manufacturing and industrial

processes."

#CodeBEAMSF

#CodeBEAMSF

#CodeBEAMSF

Datacenter UPS

#CodeBEAMSF

#CodeBEAMSF

Embedded Systems
Self-contained and single purpose

#CodeBEAMSF

Embedded systems for me going into the 00s

● Large low level C/C++ codebases
● Increasingly networked
● Transitioning from all in-house development

#CodeBEAMSF

Embedded systems for me going into the 00s

● Message-based communication
● Failure recovery by restarting subsystems
● Rapidly falling processor prices

#CodeBEAMSF

Tools, runtime, and libraries for creating robust
embedded systems using Elixir

#CodeBEAMSF

O
TP

 R
el

ea
se

 Linux Kernel

Native
libraries,
apps, and
board
support
from
Buildroot

erlinit

MBR/GPT

Bootloader

Rootfs A

Rootfs B

Data

#CodeBEAMSF

O
TP

 R
el

ea
se

 Linux Kernel

Native
libraries,
apps, and
board
support
from
Buildroot

erlinit

NervesHub

#CodeBEAMSF

Reviewing the path so far...

#CodeBEAMSF

#CodeBEAMSF

#CodeBEAMSF

Datacenter UPS

#CodeBEAMSF

BEAM on the Edge
Innovation Through Problem Solving

Robert Virding
Frank Hunleth

