

SimGen
A New Simulation Language

Anomalometry

Simulation

Behaviours

Behaviour is a
pattern of activity
continuing over time

Bouncing Ball

Examples

● Non-player character for a game
● Artificial agent
● System simulation
● System control (eg pre-launch countdown)
● Progress through a process (eg website signup)

Evening Out

Running

Life Cycle

Consult the bt language file
use_bt(‘myprog.bt’)

Syntax

name operator stuff .

{ operator stuff }

% comment

/* comment */

root <> { ->
 {! ydot = 1, y = 10
 ;; 1 > 7 },
 in_air,
 bounce
 }.

in_air !
 y = 0
 ; ydot := ydot – 0.1, y = y + ydot
 ; y >= 0
.

bounce !
 ydot = abs(ydot) * 0.9, y = 0
 ;; 1 > 7
.

Node Types

~? [child | weight ":" child]+

Randomly run a child. Default weight 1.0

-> child+

Do a sequence of things. If one fails, the node fails.

~> child+

Randomly order the children, and then execute as ->

=> child+

Run in parallel. If any fail, fail. Join at end.

Guard a condition. Enforce coordinated action.

=? child+

Run in parallel. If any fail, fail. If any succeed, succeed.

? condition
Check guard - checks the condition every tick. If the condition is false, it fails. If true, it
succeeds

-? condition
Wait guard - waits until the condition is true and succeeds

set condition
makes the condition true

clear condition
makes the condition false

try child
run the child and succeed whether the child succeeds or fails

fail
just fail

not child
fail when child succeeds, succeed if child fails

dur number
wait this number of user time units, then succeed

pin child
emit a Simularity specific pair of 'pin' events

<> child

loop - run the child repeatedly until it fails

<--> child

retry loop - run the child repeatedly until it succeeds

PDQ Operator
● ! partial differential equation
● ! First_tick ; Rest_ticks ; Conds
● Cond tested at bottom
● := from last cycle
● = dataflow

PDQ = is + these

 levy_flight(Prev, Lo, Hi) which performs a Levy Flight between its low and high values.

 wander(Prev, Lo, Hi, Dist) randomly wanders a uniform 0-Dist on each step

 clock() returns the current context clock

 pow(Old, Exp) - exponential

 lshift(Old, Bits) - left shift

 rshift(Old, Bits) - right shift

 bitor(A, B) - bitwise OR

 bitand(A, B) - bitwise AND

1 9 17 25 33 41 49 57 65 73 81 89 97
0

20

40

60

80

100

120

-15

-10

-5

0

5

10

15

levy flight

wander

Interacting with Prolog

Running
start_simulation(

 0, % the start time, in 'our' units

 60_000_000_000, % how long our units are in nanos

 1, % how long a tick is in our units

 Extern) % info passed with the

start_context(Root, Context, Time).

end_simulation

Messages

:- use_module(library(broadcast)).

:- listen(

 reading(Time, ContextTime,

 Context, Type, Value),

 handler(....)).

Messages
● reading(Time, ContextTime, Context, Name, Val)
● starting(Context-Type)
● stopped(Context-Type, Why)
● Why is done, fail, or terminated
● tick(Extern, Tick, NewExtern)

Future
● Variables are vectors
● Real PDQ
● Drop special syntax

Thanks
● Liz Derr at Simularity
● Ray Richardson at Simularity

Code available at

https://github.com/simularity/SimGen

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

