
Intertwingling the
TiddlyWiki

Joe Armstrong
Jeremy Ruston

Plan
• Intertwingledness

• Avoiding ground hog day

• Making complex things and the joy of all-in-oneness

• The TiddlyWiki - the correct level of granularity - but
deeply intertwingled

• Reusing the TiddlyWiki - CST (Communicating Sequential
TiddlyWikis)

• The experiments

"EVERYTHING IS DEEPLY INTERTWINGLED.
In an important sense there are no "subjects"
at all; there is only all knowledge, since the
cross-connections among the myriad topics
of this world simply cannot be divided up
neatly.”

Ted Nelson -
Computer Lib/Dream Machines 1974

Hierarchical and sequential structures,
especially popular since Gutenberg, are usually
forced and artificial. Intertwingularity is not
generally acknowledged—people keep
pretending they can make things hierarchical,
categorizable and sequential when they can’t.

Ted Nelson -
Computer Lib/Dream Machines 1974

In Buddhism, saṃsāra
is the "suffering-laden
cycle of life, death, and
rebirth, without
beginning or end

The Groundhog cycle
1. Invent something simple
2. Add features
3. Add more features
4. Add features to the features
5. …
6. It’s so complicated nobody very  

few people can change it
7. It’s very powerful and very useful
8. Add more features
9. … we’ll add one more feature …  

what could possibly go wrong?
…
N. Goto 1

What do we do when
things get very complicated

but are very useful?

• Throw away and start again 
(Groundhog) - you miss the good things

• Stick it in a container and only use a defined
interface - (one day you’ll get containers in
containers - but never mind)

• Add a messaging interface 
(Biological model)

CSCT

• Communication Sequential Complex Things  
(CSP ++)

1. Add a mailbox to the complex thing
2. Define a messaging protocol

All in-one’ness

An “all-in-one” application
has the code and all the

data in a container

When the code and data are
separated disasters will happen

Keynote Talk.key

Keynote vsn N Talk.key

Keynote vsn N-1 Talk.key

e-mail

All in one ness

• Opposite of “reusing dependencies”

• - Slow and difficult to write

• + Increased understanding

• +++++++ works “forever”

5 steps
to

all-in-one ness

Write a program to
display a nice button

in the browser

Step 1

<link rel="stylesheet"
 href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css"
 integrity=“sha384-MCw98/SFnGE8fJT3…ERdknLPMO”
 crossorigin="anonymous">

<button class="btn btn-danger">Danger</button>

- Not future proof  
 CDN will break 
- 141 KB of css 
- can’t work off-line 
+ fast time to market  

Use a remote CDN

“I’d never do that!”
“It’s a security nightmare”
“141KBytes to get 10 lines of css”
“Why is my web page 4 MBytes”
“I bet the CDN will be dead in 3 years time”

Step 2

<link rel="stylesheet"
 href="./bootstrap.min.css">

<button class="btn btn-danger">Danger</button>

- Not future proof  
 move the files and you’ll  
 break things 
+ can work off-line  
 
 

Make a local copy of the CDN

Step 3

<style>
 …
 173 Kbytes of Css
 …
</style>

<button class="btn btn-danger">Danger</button>

- Future proof 
 move the files and you 
 won’t break things

- Huge and horrible 
 
 

-

Move the css into to the HTML file

Step 4
<style>

.btn {
 display: inline-block;
 font-weight: 400;
 text-align: center;
 white-space: nowrap;
 vertical-align: middle;
 -webkit-user-select: none;
 -moz-user-select: none;
 -ms-user-select: none;
 user-select: none;
 border: 1px solid transparent;
 padding: 0.375rem 0.75rem;
 font-size: 1rem;
 line-height: 1.5;
 border-radius: 0.25rem;
 transition: color 0.15s ease-in-out, background-color 0.15s ease-in-out,
 border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out;
}

.btn-danger {
 color: #fff;
 background-color: #dc3545;
 border-color: #dc3545;
}
</style>

<button class="btn btn-danger">Danger</button>

- Takes time 
- Copyright???
+ Small 
+ Increased comprehension  
+ Future proof 
 

Manual garbage collection

Step 5

<style>
.danger {
 font-size: 1rem;
 border-radius: 0.3rem;
 color: white;
 background-color: red;
}
</style>

<button class="danger">Danger</button>
 
+ Small 
+ Increased comprehension  
+ Future proof 
+ Maintainable 
- Bad time to market
 
 

Manual refactoring

Do you really want to
add <N> Mbytes of
incomprehensible
stuff to your application in
order to use the 0.01% of
features you actually use?

• No build system

• No webpack/grunt/bower/

Two outstanding
all-in-one apps

• Smalltalk

• TiddlyWiki

The TiddlyWiki

• Small-grain knowledge

• Highly intertwingled

• Proper translusions

• Logic queries “findall tags such that …”

A todo list
in the TiddlyWiki

I create a single tiddler called
ToDo and start typing

• Water the cats
• Feed the plants
• Buy some milk
• …
•

Todo

Eureka moment

tag:todo
* I have to water the cats

WaterCats

tag:todo
* Buy some milk

Milk

<<list-links "[tag[todo]">>
Todo

1) This is an elastic transclusion
If I create a new tiddler with tag
‘todo’ and happen to be displaying
the ToDo tidder the display will
update.
2) I now have small grain objects
that can be transcluded elsewhere

Jeremy Ruston

• The Human Garbage collector

• https://classic.tiddlywiki.com/archive/
secondversion.html

• https://classic.tiddlywiki.com/archive/

https://classic.tiddlywiki.com/archive/secondversion.html
https://classic.tiddlywiki.com/archive/secondversion.html
https://classic.tiddlywiki.com/archive/

Early TW’s
what did we learn

“TwiddlyWiki”
• First unreleased version, August 2004

• A wiki for microcontent

• Shows multiple pages at once (cribbed from GMail)

• Explores visualising navigation between them

• 200 lines of HTML/CSS/JS

What’s So Wonderful About
Wikis?

• A rudimentary implementation of hypertext that
gets one thing right: making linking be part of the
punctuation of writing

• Not so much the anybody-can-edit ethos

September 2004
• First released version

• Coins the ludicrous names “TiddlyWiki” and
“tiddler”

• Tries to look like a blog

• Adds support for editing tiddlers

• Went viral, 2004-style

“Just a demo”

Implemented as a single HTML file, so impossible to
save changes anywhere

We’re Not in Kansas
Anymore

• Several people wrote server-side code to enable
TiddlyWiki to save changes; result was that tech people
could find their favourite flavour: PHP, Zope, Python

• Somebody made a Firefox extension that used XUL file
system APIs to save locally

• Discovered those same APIs would work in a regular
HTML page (but pop up a permission dialogue)

• Then discovered similar APIs in Internet Explorer

• Wow… a cross-platform self-contained app

Insights
• The purpose of recording information is to reuse it.

• To optimise for reuse we need to cut information up into
the smallest semantically meaningful chunks.

• We must also assign sufficient metadata for the
fragments to be woven back together into a plurality of
representations.

• Not everyone wants to run a server; the browser is the
VM/container for everyone – provision a new VM with
ctrl-T

Satisfying Things About
TiddlyWiki

• Self contained, single file

• Entire user interface is constructed from a handful
of wiki text primitives

• A practical Quine (a program that prints its own source code)

TiddlyWiki Philosophy

• Tiddlers are the smallest semantic units of
information; everything is a tiddler

• The only process is wikification

• Solve the meta problem: don't build a notetaking
application, build an application that can be used
to create notetaking applications

TiddlyWiki 5 = Groundhog
Day

• “A reboot of TiddlyWiki for the next 25 years” (2011
- will actually last much longer!)

• Still JavaScript, but runs under Node.js as well as
the browser

• Completely redesigned internals: a small number of
primitives recombined to make everything you see

Unexpected Consequences
of TiddlyWiki

• Empowers users by not needing a server

• Setting up a server is hard

• Using somebody else’s server involves
compromises to privacy and/or security

• Absurdly scalable: 100MB TW’s work on a 2013
laptop

Disrupting High School
Volleyball Teaching

• Made through trial and error by someone who isn’t
a software developer…

• …without them having to explain what they wanted
to somebody else (hard!)

• There’s no business model for building tools that
are so specific to a particular niche. It’s hard to
imagine raising VC funding for a software company
specialising in high school volleyball

Experiments

What problems do we
want to solve

• How can we re-use TW content?

• How can we avoid groundhog day

Provenance

Provenance

Noun

1. The place of origin or earliest known  
history of something.

Oxford English Dictionary

• We don’t know where the stuff in  
a file comes from 

• The fault lies in editors “cut-and-paste”  
does not retain information about where  
the data came from (there should be an  
invisible tag recording this)

Where does content
come from?

• Attribution
• IPR
• EDL’s
• CDL’s
• Blockchains
• Write append logs

A central idea in Xanadu

Tagging

Tagging

• Bayesian inference

• TF*IDF

Communicating
Tiddly Wikis

Combining TWs
• One big namespace

• One namespace per TW

• All Tiddlers in a TW are visible

• Only exported tiddlers are visible

• Tiddler discovery

• Tiddler similarity

• Communication islands of knowledge

Ongoing
Experiments

• Adding an Erlang like mailbox model for
communicating TW’s  
(Inter-tiddler messaging, Inter TW-messaging)

• Analyse all known TWs

• Tag inference

• Focus of attention

Resources

https://jermolene.com/intertwingling

https://jermolene.com/intertwingling

Thank You

Joe
https://www.sics.se/SSW2016/speakers/joe-armstrong

Jeremy
Personal: https://jermolene.com

Work: https://federatial.com

https://www.sics.se/SSW2016/speakers/joe-armstrong
https://jermolene.com
https://federatial.com

