
Message passing for actors and
humans

1 / 62

Hi

name - Peter Saxton

@internets - CrowdHailer

@works - paywithcurl.com

2 / 62

http://localhost:9000/2018-11-08/message-passing-for-actors-and-humans/paywithcurl.com

3 / 62

lets talk about,

The Actor model

4 / 62

Actors
Universal primitive of concurrent computation
Communicate via asynchronous message passing
React to messages by making local decisions

First proposed by Carl Hewitt in 1973

5 / 62

6 / 62

Universal primitive

An actor has three essential elements:
1. Processing
2. Storage
3. Communication

Everything is an actor

7 / 62

Asynchronous message passing

No delivery guarantees
No order guarantees

Similar to original Object Oriented programming (OOP)

8 / 62

Local decisions

No shared/global state
In response to a message, an actor may:

1. Create more actors
2. Send messages to other Actors that it has addresses for
3. Designate how the Actor is going to handle the next message it receives

9 / 62

In the wild
Elixir
erlang
Akka (JVM)

10 / 62

Let's build our own

in JavaScript

11 / 62

The simplest actor

var state = 0

while (true) {

 const message = await mailbox.receive()

 state = state + 1

}

// somewhere else

mailbox.deliver(message)

12 / 62

Blocking mailbox

function Mailbox () {

 var messages = [], awaiting = undefined

 function receive () {

 return new Promise(function (resolve) {

 if (next = messages.shift()) {

 resolve(next)

 } else {

 awaiting = resolve

 }

 })

 }

 async function deliver (message) {

 messages.push(message)

 if (awaiting) {

 awaiting(messages.shift())

 awaiting = undefined

 }

 }

 return {receive: receive, deliver: deliver}

}

13 / 62

General purpose actor

function init () { return 0 }

function handle (message, count) {

 return count + 1

}

var state = init()

while (true) {

 const message = await mailbox.receive()

 state = handle(message, state)

}

14 / 62

Starting actors

function Actor (init, handle) {

 const mailbox = Mailbox()

 (async function run () {

 var state = init()

 while (true) {

 const message = await mailbox.receive()

 state = handle(message, state)

 }

 })()

 return {deliver: mailbox.deliver}

}

Guarantees only this actor is able to receive from the mailbox

15 / 62

Actor system - requirements
Actors specify a concurrent program. To run the program requires an Actor System
that handles.

Allocating addresses
Delivering messages
Scheduling actors

16 / 62

Actor System

const actors = []

function start (init, handle) {

 return actors.push(Actor(init, handle)) - 1

}

async function deliver (address, message) {

 actors[address].dispatch(message)

}

ActorSystem = {start, deliver}

17 / 62

Actor system - trade offs
Concurrent (not parallel)
Cooperative (not preemtive)
Voluntary (not obligatory)

18 / 62

19 / 62

Cooperative vs Preemtive

Cooperative - processes must yield control.
Preemtive - a process can be stoped at any time.

const message = mailbox.receive()

// greedy process

while (true) {

 // run forever

}

20 / 62

Voluntary vs Mandatory

// send a mutable message

const message = []

ActorSystem.dispatch(actor, message)

// later

message.push('surprise')

const message = mailbox.receive()

// use global state

window.message = message

21 / 62

Example: Ping pong

// actor behaviour

function init () { return null }

function handle ({type, address}, state) {

 if (type == 'ping') {

 ActorSystem.dispatch(address, {type: 'pong'})

 } else {

 console.log('Received Pong!')

 }

 return state

}

// run

const a1 = ActorSystem.start(init, handle)

const a2 = ActorSystem.start(init, handle)

ActorSystem.dispatch(a1, {type: 'ping', address: a2})

22 / 62

Why?

23 / 62

Where is shared memory

24 / 62

Your distributed system
High availability
client and server
backups failover
multicore

Sending data ALWAYS has latency, and is unreliable.

25 / 62

Programming is parallel

26 / 62

27 / 62

“My �rst message is that concurrency is best regarded as a program
structuring principle”

Tony Hoare

28 / 62

Packing huge big rocks into containers is very very dif�cult, but pouring sand
into containers is really easy. If you think of processes like little grains of sand
and you think of schedulers like big barrels that you have to �ll up, �lling your
barrels up with sand, you can pack them very nicely, you just pour them in
and it will work.

Joe Armstrong

29 / 62

ActorSystem2

navigator.hardwareConcurrency

// 4

new Worker('./actor-system.js')

Left as an exercise for the reader.

30 / 62

Abstracted communication

31 / 62

32 / 62

Many to Many relationship among Actors and Addresses.

$ dig +short google.com

216.58.204.14

33 / 62

Descriptive side effects

var state = init()

while (true) {

 const message = await mailbox.receive()

 {outbound, state} = handle(message, state)

 outbound.forEach(doSend)

}

handle can now be a totally pure function

Session types

http://www.di.unito.it/~dezani/papers/sto.pdf

34 / 62

http://www.di.unito.it/~dezani/papers/sto.pdf

35 / 62

HTTP is message passing

The Hypertext Transfer Protocol (HTTP) is a stateless application- level
request/response protocol that uses extensible semantics and self-descriptive
message payloads for �exible interaction with network-based hypertext
information systems.

Let's build a server

36 / 62

Mandatory actor system

The Erlang view of the world is that everything is a process and that processes
can interact only by exchanging messages.

Joe Armstrong

37 / 62

What is Raxx?
1. Elixir interface for HTTP servers, frameworks (and clients)
2. Toolkit for web development
3. Simple streaming support

and Ace?

A server to run Raxx applications

1. HTTP/2 + HTTPS, by default
2. Isolated message exchanges

38 / 62

Walking tour of Ace

We do not have ONE web-server handling 2 millions sessions. We have 2
million webservers handling one session each.

Managing Two Million Webservers

Joe Armstrong

39 / 62

https://joearms.github.io/published/2016-03-13-Managing-two-million-webservers.html

40 / 62

41 / 62

42 / 62

GenServer

defmodule MyServer do

 use GenServer

 def handle_call(:request, _from, state) do

 {:reply, :response, state}

 end

end

43 / 62

Raxx.SimpleServer

defmodule Greetings do

 use Raxx.Server

 def handle_request(

 _request,

 _state)

 do

 %Raxx.Response{status: 200,

 headers: ["content-type", "text/plain"]

 body: "Hello, World!"}

 end

end

44 / 62

Raxx.SimpleServer

defmodule Greetings do

 use Raxx.Server

 def handle_request(

 _request,

 _state)

 do

 response(:ok)

 |> set_header("content-type", "text/plain")

 |> set_body("Hello, World!")

 end

end

45 / 62

Raxx.SimpleServer

defmodule Greetings do

 use Raxx.Server

 def handle_request(

 %{path: ["name", name]},

 _state)

 do

 response(:ok)

 |> set_header("content-type", "text/plain")

 |> set_body("Hello, #{name}!")

 end

end

46 / 62

Raxx.SimpleServer

defmodule Greetings do

 use Raxx.Server

 def handle_request(

 %{path: ["name", name]},

 %{greeting: greeting})

 do

 response(:ok)

 |> set_header("content-type", "text/plain")

 |> set_body("#{greeting}, #{name}!")

 end

end

47 / 62

What about streaming?

48 / 62

 tail | data(1+) | head(request) -->

Client == Server

 <-- head(response) | data(1+) | tail

49 / 62

defmodule Upload do

 use Raxx.Server

 def handle_head(%{path: ["upload"] body: true}, _) do

 {:ok, io_device} = File.open("my/path")

 {[], {:file, device}}

 end

 def handle_data(data, state = {:file, device}) do

 IO.write(device, data)

 {[], state}

 end

 def handle_tail(_trailers, state) do

 response(:see_other)

 |> set_header("location", "/")

 end

end

50 / 62

The Raxx toolkit
Routing ✔

Middleware ✔

Templates ✔ (EExHTML)
Code reloading ✔ (Raxx.Kit)
Project generators ✔ (Raxx.Kit)

51 / 62

Next?

52 / 62

GenBrowser

GenBrowser treats clients as just another process in one continuous, if widely
distributed, system. Every client gets an address to which messages can be
dispatched; and a mailbox where messages are delivered.

53 / 62

Actor lifecycle
1. Client joins, it is not started.

const client = await GenBrowser.start('http://localhost:8080')

const {address, mailbox, send, communal} = client

console.log(address)

// "g2gCZA ..."

2. Disconnected clients are not dead.

54 / 62

Messages from the server

message = %{

 "type" => "ping",

 "from" => GenBrowser.Address.new(self())

}

GenBrowser.send("g2gCZA ...", message)

receive do

 message ->

 IO.inspect(message)

end

=> %{"type" => "pong"}

55 / 62

Messages from a client

client.send("g2gCZA ...", {type: 'ping', from: client.address})

const reply = await client.mailbox.receive({timeout: 5000})

console.log("Pong received")

56 / 62

Guarantees
There should be only one actor per mailbox

Reconnection requires a cursor signed by the server
Addresses are unforgable

Addresses are all signed by the server
Object capability model

57 / 62

Try it out

Plug/Phoenix integration

communal = %{myProcess: GenBrowser.Address.new(MyNamedProcess)}

plug GenBrowser.Plug, communal: communal

Docker playground

docker run -it -e SECRET=s3cr3t -p 8080:8080 gen-browser

58 / 62

What's behind an address?

{:via, GenBrowser, "abc123"}

{:via, IOTSensor, "lightbulb"}

{:via, PersistantActor, "4ever"}

{:via, EmailService, "bob@example.com"}

59 / 62

Humans

60 / 62

Humans
Universal primitive of concurrent computation
Communicate via asynchronous message passing
React to messages by making local decisions

61 / 62

Thank you
See the code

github.com/crowdhailer/raxx
Interface for HTTP webservers, frameworks and clients.

github.com/crowdhailer/gen_browser
Actors for the client and server

Comments and questions

twitter.com/CrowdHailer

62 / 62

https://github.com/crowdhailer/raxx
https://github.com/crowdhailer/gen_browser
http://localhost:9000/2018-11-08/message-passing-for-actors-and-humans/twitter.com/CrowdHailer

