N
"
//

=> _ What You Needa Know
¢ About Yoneda

Jeremy Gibbhons
Guillaume Boisseau

Diego Delso (delso.photo), CC-BY-SA

The Yoneda Lemma (#CodeMeshLDN)

1. Nobuo Yoneda

e 1930-1996

e Professor of Theoretical
Foundations of Information
Science, University of Tokyo

e member of [FIPWG2.1,
contributor to discussions
about Algol 68, major role in
AlgolN

e but primarily an algebraist

Category Theory Ahead

" Vorsicht

Funktor

| 2m Abstand halten A

2. The Yoneda Lemma

“Arguably the most important result in category theory” (Emily Riehl).

The Yoneda Lemma, formally:

For C a locally small category, [C,Set](C(A,—),F) =~ F(A),
naturally in A € C and F € [C, Set].

From left to right, take nt ¢ : C(A, —) > F to ¢pa(ids) € F(A).
From right to left, take element x € F(A) to nt ¢ such that ¢pp(f) = F(f)(x).

As a special case, the Yoneda Embedding:

The functor Y : C°P — [C, Set] is full and faithful, and injective on
objects.

|C,Set](C(A,—-),C(B,—)) =~ C(B,A)

Quite fearsomely terse!

The Yoneda Lemma (#CodeMeshLDN)

3. The Yoneda Lemma, philosophically

roughly, “a thing is determined by its relationships with other things”
in English, you can tell a lot about a person by the company they keep

in Japanese, Af (‘ningen’, human being) constructed from
A (‘nin’, person) and & (‘gen’, between),

in Euclidean geometry, a point ‘is’ just the lines that meet there
in poetry, c’est 'execution du poeme qui est le poeme (Valery)

in music, die Idee der Interpretation gehort zur Musik selber und ist ihr nicht
akzidentiell (Adorno)

in sculpture, need to see a work from all angles
in order to understand it (Mazzola)

4. The Yoneda Lemma, computationally

Approximate category Set by Haskell:

e Objects A are types, arrows [are functions
e functors are represented by the type class Functor
e natural transformations are polymorphic functions.

Then Yoneda representation Yo [a =~ f a of functorial datatypes:

data Yof a= Yo {unYo: Vx.(a—- x) - [x}
fromYo::Yofa—- [a
fromYoy = unYo y id -- apply to identity

toYo:: Functor f = fa— Yof a
toYox = Yo (Ah — fmap h x) -- use functorial action

—“an F of As is a method for yielding an F of Xs, given an A — X”.

5. The Yoneda Lemma, dually

Now consider one half of this bijection:

VA.F(A) - (VX.(A- X) - F(X))
~VA.VX.FA) - (A-X) - F(X)
~VA.VX.(F(A) X(A- X)) - F(X)
~VX.VA.(F(A) X (A—- X)) - F(X)
~VX.(dA.F(A) X (A - X)) - F(X)

Hence a kind of dual, ‘co-Yoneda’: (Ix. (x —» a,f x)) =~ [a for functor [
—“an F of Xs can be represented by an F of As and an abstraction A — X”.

Indeed, for functor F and object X:
(JA.F(A) X (A - X)) = F(X)

But even for non-functor F, lhs is functorial...

loT toaster

Signature of commands for remote interaction:

data Command :: * — % where
Say :: String - Command ()
Toast::Int —— Command ()
Sense :: () — Command Int

GADT, but not a functor; type index rather than type parameter.
So no free monad, for representing terms.

Co-Yoneda trick to the rescue:
data Actiona = 3r . A (Command r,r — a)

Action is a functor, even though Command is not.

6. The Yoneda Lemma, familiarly (1)

Any preorder (A, <) forms a degenerate category: arrow a — b iff a < b.

Proof by indirect inequality or indirect order c1
(b<a) © (Vec.(a<c) = (b<o)) b"cz
is the Yoneda Embedding in category Pre(<): " .

[Pre(<),Set](Pre(<)(a, —),Pre(<)(b,—)) = Pre(<)(b,—)(a) = Pre(<)(b,a)

e homset Pre(A, <) (b, a) is a ‘thin set’: singleton or empty
e homfunctor Pre(A, <)(a, —) takes ¢ € A to singleton set when a < ¢, else empty

e natural transformation ¢ : Pre(A, <) (a,—) = Pre(A,<)(b,—) is
function family ¢.: Pre(A,<)(a,c) — Pre(A, <) (b, c)

e SO ¢, is a witness that if Pre(A, <)(a, c) £ & then Pre(A,<)(b,c) # &

The Yoneda Lemma (#CodeMeshLDN)

The Yoneda Lemma, familiarly (2)

Any functor F preserves iSos:
F(f)oF(g) =id < F(fog)=F(id) « fog=id

Full and faithful functor (ie bijection on arrows) also reflects isos.

Hom functor C(—, =) is full and faithful; so
(C(B,-) =C(A,-)) & (A=B) & (C(-,A) =C(—,B))
in particular for C = Pre(<), the rule of indirect equality:-

(b=a) & (Vc.(a<c)e (b<o0))

The Yoneda Lemma, familiarly (3)

Cayley’s Theorem
every group is isomorphic to a group of bijections
and similarly

every monoid is isomorphic to a monoid of endomorphisms

(M, ®,e) = (1(m®) | me Mj, (o), id)

A standard trick, in particular for the monoid ([A], +,[]):

represent list xs by function (xs+), linear-time + by constant-time o

The Yoneda Lemma (#CodeMeshLDN)

7. Optics

e compositional references (Kagawa, Oles)

e lens combinators (Foster, Pierce)

S/

11

Concrete optics

A view onto a product type:

datalensabst = Lens { view IS — d,
update:: s X b — t}

A view onto a sum type:

data Prismabst = Prism{ match ::s— t+ a,
build b — t}

Common specialization, for adapting interfaces:

data Adapter a b s t = Adapter {from :s— a,
to b -t}

But they don’t compose well—what is a Lens composed with a Prism?

Profunctor optics

Formally, functors C°° x C — Set.
Informally, transformers, which consume and produce:

class Profunctor p where
dimap::(c—-a) - (b—-d) - pab-pcd

Plain functions — are the canonical instance:

instance Profunctor (—) where
dimap f gh=gohof

Profunctor adapter adapts transformer p a b to p s t, uniformly in p:
type AdapterPab st = Vp. Profunctor p=>pab — pst

Now ordinary functions, so compose straightforwardly.

Similar constructions for lenses and prisms.

Double Yoneda Embedding

Key insight, by Bartosz Milewski, from two applications of Yoneda:
[[C,Set],Set]((—)A, (—)B) = C(A, B)

In Haskell, this says:
(Vf .Functor f = fa—-f b) =~ (a—- b)

Indeed, these are inverses:

fromFun:: (Vf . Functor f = fa— f b) - (a— b)

fromFun phi = unld o phi o Id -- apply to identity
toFun:: (a—- b) — (Vf . Functor f = fa— [b)
toFun = fmap -- use functorial action

But this works in any category, including C°? x C.
Hence AdapterP a b st ~ Adapter a b s t. Similarly for lenses and prisms.

The Yoneda Lemma (#CodeMeshLDN)

8. Conclusions

e Yoneda Lemma is essentially simple, but surprisingly deep
e profunctor optics are practical and powerful, but mysterious

e Yoneda simplifies previously convoluted proofs of equivalence

e some of these ideas due to Guillaume Boisseau, Ed Kmett, Russell O’Connor,
Matthew Pickering, Bartosz Milewski

MScin

e paper with Guillaume Boisseau at ICFP 2018: Software
. . Engineering
www.cCcS.ox.ac.uk/jeremy.gibbons/

e plug: part-time professional MSc in SE at Oxford

15

