
What You Needa Know
About Yoneda

Jeremy Gibbons

Guillaume Boisseau

D
ie

go
 D

el
so

(d
el

so
.p

h
o
to

),
 C

C
-B

Y
-S

A

The Yoneda Lemma (#CodeMeshLDN) 2

1. Nobuo Yoneda

• 1930–1996

• Professor of Theoretical
Foundations of Information
Science, University of Tokyo

• member of IFIP WG2.1,
contributor to discussions
about Algol 68, major role in
Algol N

• but primarily an algebraist

The Yoneda Lemma (#CodeMeshLDN) 3

2. The Yoneda Lemma

“Arguably the most important result in category theory” (Emily Riehl).

The Yoneda Lemma, formally:

For C a locally small category, [C, Set](C(A,�), F) ' F(A),
naturally in A 2 C and F 2 [C, Set].

From left to right, take nt � : C(A,�) .! F to �A(idA) 2 F(A).
From right to left, take element x 2 F(A) to nt � such that �B(f) = F(f)(x).

As a special case, the Yoneda Embedding:

The functor Y : Cop ! [C, Set] is full and faithful, and injective on
objects.

[C, Set](C(A,�),C(B,�)) ' C(B,A)

Quite fearsomely terse!

The Yoneda Lemma (#CodeMeshLDN) 4

3. The Yoneda Lemma, philosophically

• roughly, “a thing is determined by its relationships with other things”

• in English, you can tell a lot about a person by the company they keep

• in Japanese,�� (‘ningen’, human being) constructed from
� (‘nin’, person) and� (‘gen’, between),

• in Euclidean geometry, a point ‘is’ just the lines that meet there

• in poetry, c’est l’exécution du poème qui est le poème (Valéry)

• in music, die Idee der Interpretation gehört zur Musik selber und ist ihr nicht
akzidentiell (Adorno)

• in sculpture, need to see a work from all angles
in order to understand it (Mazzola)

The Yoneda Lemma (#CodeMeshLDN) 5

4. The Yoneda Lemma, computationally

Approximate category Set by Haskell:

• objects A are types, arrows f are functions
• functors are represented by the type class Functor
• natural transformations are polymorphic functions.

Then Yoneda representation Yo f a ' f a of functorial datatypes:

data Yo f a = Yo {unYo ::8x . (a ! x)! f x}
fromYo :: Yo f a ! f a
fromYo y = unYo y id -- apply to identity

toYo :: Functor f) f a ! Yo f a
toYo x = Yo (�h ! fmap h x) -- use functorial action

—“an F of As is a method for yielding an F of Xs, given an A ! X ”.

The Yoneda Lemma (#CodeMeshLDN) 6

5. The Yoneda Lemma, dually

Now consider one half of this bijection:

8A . F(A)! (8X . (A ! X)! F(X))
' 8A . 8X . F(A)! (A ! X)! F(X)
' 8A . 8X . (F(A)⇥ (A ! X))! F(X)
' 8X . 8A . (F(A)⇥ (A ! X))! F(X)
' 8X . (9A . F(A)⇥ (A ! X))! F(X)

Hence a kind of dual, ‘co-Yoneda’: (9x . (x ! a, f x)) ' f a for functor f
—“an F of Xs can be represented by an F of As and an abstraction A ! X ”.

Indeed, for functor F and object X :

(9A . F(A)⇥ (A ! X)) ' F(X)

But even for non-functor F , lhs is functorial. . .

The Yoneda Lemma (#CodeMeshLDN) 7

IoT toaster

Signature of commands for remote interaction:

data Command ::⇤ ! ⇤ where
Say :: String ! Command ()
Toast :: Int ! Command ()
Sense :: () ! Command Int

GADT, but not a functor; type index rather than type parameter.
So no free monad, for representing terms.

Co-Yoneda trick to the rescue:

data Action a = 9r . A (Command r, r ! a)

Action is a functor, even though Command is not.

The Yoneda Lemma (#CodeMeshLDN) 8

6. The Yoneda Lemma, familiarly (1)

Any preorder (A,6) forms a degenerate category: arrow a ! b iff a 6 b.

Proof by indirect inequality or indirect order

(b 6 a)a (8c . (a 6 c)) (b 6 c)) b a

c1

c2

c3is the Yoneda Embedding in category Pre(6):

[Pre(6), Set](Pre(6)(a,�),Pre(6)(b,�)) ' Pre(6)(b,�)(a) = Pre(6)(b,a)

• homset Pre(A,6)(b,a) is a ‘thin set’: singleton or empty

• homfunctor Pre(A,6)(a,�) takes c 2 A to singleton set when a 6 c, else empty

• natural transformation � : Pre(A,6)(a,�) .! Pre(A,6)(b,�) is
function family �c : Pre(A,6)(a, c)! Pre(A,6)(b, c)

• so �c is a witness that if Pre(A,6)(a, c) 6⌘ ; then Pre(A,6)(b, c) 6⌘ ;

The Yoneda Lemma (#CodeMeshLDN) 9

The Yoneda Lemma, familiarly (2)

Any functor F preserves isos:

F(f) � F(g) = id a F(f � g) = F(id) (f � g = id

Full and faithful functor (ie bijection on arrows) also reflects isos.

Hom functor C(�,=) is full and faithful; so

(C(B,�) ' C(A,�)) a (A ' B) a (C(�,A) ' C(�,B))

in particular for C = Pre(6), the rule of indirect equality:

(b = a) a (8c . (a 6 c)a (b 6 c))

The Yoneda Lemma (#CodeMeshLDN) 10

The Yoneda Lemma, familiarly (3)

Cayley’s Theorem

every group is isomorphic to a group of bijections

and similarly

every monoid is isomorphic to a monoid of endomorphisms

(M ,�, e) ' ({(m�) | m 2 M}, (�), id)

A standard trick, in particular for the monoid ([A],++, []):

represent list xs by function (xs++), linear-time ++ by constant-time �

The Yoneda Lemma (#CodeMeshLDN) 11

7. Optics

• compositional references (Kagawa, Oles)

• lens combinators (Foster, Pierce)

a b c d

e

f

g

h i

j k

e

f

g

e V

V 0

S

S0

The Yoneda Lemma (#CodeMeshLDN) 12

Concrete optics

A view onto a product type:

data Lens a b s t = Lens { view :: s ! a,
update :: s ⇥ b ! t }

A view onto a sum type:

data Prism a b s t = Prism { match :: s ! t + a,
build :: b ! t }

Common specialization, for adapting interfaces:

data Adapter a b s t = Adapter {from :: s ! a,
to :: b ! t }

But they don’t compose well—what is a Lens composed with a Prism?

The Yoneda Lemma (#CodeMeshLDN) 13

Profunctor optics

Formally, functors Cop ⇥ C! Set.
Informally, transformers, which consume and produce:

class Profunctor p where
dimap :: (c ! a)! (b ! d)! p a b ! p c d

Plain functions ! are the canonical instance:

instance Profunctor (!) where
dimap f g h = g � h � f

Profunctor adapter adapts transformer p a b to p s t, uniformly in p:

type AdapterP a b s t = 8p . Profunctor p) p a b ! p s t

Now ordinary functions, so compose straightforwardly.

Similar constructions for lenses and prisms.

The Yoneda Lemma (#CodeMeshLDN) 14

Double Yoneda Embedding

Key insight, by Bartosz Milewski, from two applications of Yoneda:

[[C, Set], Set]((�)A, (�)B) ' C(A,B)

In Haskell, this says:

(8f . Functor f) f a ! f b) ' (a ! b)

Indeed, these are inverses:

fromFun :: (8f . Functor f) f a ! f b)! (a ! b)
fromFun phi = unId � phi � Id -- apply to identity

toFun :: (a ! b)! (8f . Functor f) f a ! f b)
toFun = fmap -- use functorial action

But this works in any category, including Cop ⇥ C.
Hence AdapterP a b s t ' Adapter a b s t. Similarly for lenses and prisms.

The Yoneda Lemma (#CodeMeshLDN) 15

8. Conclusions

• Yoneda Lemma is essentially simple, but surprisingly deep

• profunctor optics are practical and powerful, but mysterious

• Yoneda simplifies previously convoluted proofs of equivalence

• some of these ideas due to Guillaume Boisseau, Ed Kmett, Russell O’Connor,
Matthew Pickering, Bartosz Milewski

• paper with Guillaume Boisseau at ICFP 2018:

www.cs.ox.ac.uk/jeremy.gibbons/

• plug: part-time professional MSc in SE at Oxford

flexible, part-time,
professional education

Software
Engineering

MSc in

