
The Road to Broadway
@plataformatec / plataformatec.com.br

Broadway

A new library for concurrent and
multi-stage data ingestion and

data processing with Elixir

1. Fetch data from Amazon SQS / Google Cloud PubSub
2. Process data concurrently
3. Batch data for ack / publishing
4. Publish data to another source and ack it

Problem

defmodule MyApp.Broadway do
 use Broadway

 def start_link(options)
 def handle_message(procesor, message, config)
 def handle_batch(batcher, messages, batch_info, config)
end

Broadway

Broadway.start_link(__MODULE__,
 name: __MODULE__,
 producers: [
 default: [
 module: {BroadwaySQS.Producer, queue_name: "my_queue"},
 stages: 4
],
],
 processors: [
 default: [stages: 20]
],
 batchers: [
 default: [batch_size: 10, batch_timeout: 1500, stages: 2]
]
)

Schedule

• Collections
• GenStage
• Broadway

Collections

Requirements

• Polymorphic
• Extensible / open
• General: in-memory and resources
• Tunable: Eager -> Lazy -> Concurrent -> Distributed

Collections: polymorphic

Enum.map([1, 2, 3], fn x -> x * 2 end)
[2, 4, 6]

Enum.map(1..3, fn x -> x * 2 end)
[2, 4, 6]

Collections: extensible

defimpl Enumerable, for: RBTree do
 def count/1
 def member?/2
 def reduce/3
 def slice/1
end

Collections: general

in-memory
Enum.map(["list", "of", "lines"], &String.upcase/1)

resource
Enum.map(File.stream!("README"), &String.upcase/1)

Collections: tunable

• Eager
• Lazy
• Concurrent
• Distributed

iex> [1, 2, 3]
...> |> Enum.map(&print/1)
...> |> Enum.map(&print/1)
1
2
3
1
2
3
[1, 2, 3]

Collections: eager

Collections: lazy
iex> [1, 2, 3]
...> |> Stream.map(&print/1)
...> |> Stream.map(&print/1)
#Stream<...>

iex> [1, 2, 3]
...> |> Stream.map(&print/1)
...> |> Stream.map(&print/1)
...> |> Enum.to_list()
1
1
2
2
3
3
[1, 2, 3]

Collections: lazy

Elixir v1.0

Collections

• ✓ Polymorphic
• ✓ Extensible / open
• ✓ General: in-memory and resources
• Tunable: Eager -> Lazy -> Concurrent -> Distributed

File.stream(path)
|> ...
|> ...
|> ...
|> ...
|> Stream.run()

Pipeline Parallelism

File.stream(path)
|> ...
|> Stream.async()
|> ...
|> Stream.async()
|> ...
|> Stream.async()
|> ...
|> Stream.run()

Pipeline Parallelism

Pipeline Parallelism

asyncFile async async run

Pipeline Parallelism

• Error prone as it requires manual user intervention
• Moving data vs moving computations
• How to reason about fault tolerance?
• How to provide back-pressure?

Gen?????

GenStage

GenStage

• It is a new behaviour
• Exchanges data between stages transparently with

back-pressure
• Provides producers, consumers and producer_consumers

GenStage

producer
consumer

producer producer
consumer

producer
consumer

consumer

GenStage: Demand-driven

BA

Producer Consumer

1. consumer subscribes to producer
2. consumer sends demand
3. producer sends events

Asks 10

Sends max 10

Subscribes

B CA
Asks 10Asks 10

Sends max 10 Sends max 10

GenStage: Demand-driven

• It pushes back-pressure to the boundary
• It is a message contract
• GenStage is one implementation of this contract
• Inspired by Akka Streams

GenStage: Demand-driven

Example

BA

Printer
(Consumer)

Counter
(Producer)

defmodule Producer do
 use GenStage

 def init(counter) do
 {:producer, counter}
 end

 def handle_demand(demand, counter) when demand > 0 do
 events = Enum.to_list(counter..counter+demand-1)
 {:noreply, events, counter + demand}
 end
end

state demand handle_demand

0 10 {:noreply, [0, 1, …, 9], 10}

10 5 {:noreply, [10, 11, 12, 13, 14], 15}

15 5 {:noreply, [15, 16, 17, 18, 19], 20}

defmodule Consumer do
 use GenStage

 def init(:ok) do
 {:consumer, :the_state_does_not_matter}
 end

 def handle_events(events, _from, state) do
 Process.sleep(1000)
 IO.inspect(events)
 {:noreply, [], state}
 end
end

{:ok, counter} =
 GenStage.start_link(Producer, 0)

{:ok, printer} =
 GenStage.start_link(Consumer, :ok)

GenStage.sync_subscribe(printer, to: counter)

(wait 1 second)
[0, 1, 2, ..., 499] (500 events)
(wait 1 second)
[500, 501, 502, ..., 999] (500 events)

Subscribe options
• max_demand: the maximum amount of events to ask  

(default 1000)
• min_demand: when reached, ask for more events  

(half of max_demand)
• cancel: how to act when the producer cancels/terminates

max_demand: 10, min_demand: 0

1. the consumer asks for 10 items
2. the consumer receives 10 items
3. the consumer processes 10 items
4. the consumer asks for 10 more
5. the consumer waits

max_demand: 10, min_demand: 5

1. the consumer asks for 10 items
2. the consumer receives 10 items
3. the consumer processes 5 of 10 items
4. the consumer asks for 5 more
5. the consumer processes the remaining 5

GenStage
dispatchers

Dispatchers

• Per producer
• Effectively receive the demand and send data
• Enable concurrency by dispatching to multiple stages

prod

1

2,5

3

4

1,2,3,4,5

DemandDispatcher

prod

1,2,3

1,2,3

1,2,3

1,2,3

1,2,3

BroadcastDispatcher

prod

1,5

2,6

3

4

1,2,3,4,5,6

PartitionDispatcher
rem(event, 4)

Data ingestion
Data processing

Data ingestion / Data processing

• Using GenStage for concurrency / back-pressure
• Many projects reimplementing the same feature set:

rate limiting, batching, metrics, etc
• Woes regarding complex pipelines

Complex GenStage pipelines

Producer Consumer

Sup
one for one

Producer Consumer

Sup
one for one

Consumer Consumer Consumer

Producer Consumer

Sup
rest for one

Consumer Consumer Consumer

Producer Producer

Sup
rest for one

Consumer Consumer Consumer

Producer Producer

Sup
one for one

Consumer Consumer Consumer

Sup
one for one

Sup
rest for one

Producer Producer

Sup
one for one

Consumer Consumer Consumer

Sup
one for one

Sup
rest for one

…steps… Terminator

Complex GenStage pipelines

• How to structure supervisions trees correctly?
• How to handle graceful shutdown without data loss?
• How to reduce the amount of events lost during failures?

Broadway

Broadway

A new library for concurrent and
multi-stage data ingestion and

data processing with Elixir

Broadway
• Back-pressure and concurrency
• Automatic acknowledgements at the end of the pipeline
• Fault-tolerance with minimal data loss
• Graceful shutdowns
• Batching and partitioning

defmodule MyApp.Broadway do
 use Broadway

 def start_link(options)
 def handle_message(procesor, message, config)
 def handle_batch(batcher, messages, batch_info, config)
end

Broadway

vNEXT
• Batchless pipelines (for RabbitMQ and others)
• Metrics and statistics
• Back-off in case of failures
• etc

Your turn
• Give it a try: v0.1 is out!
• Write a Broadway producer for your favorite thing

• BroadwaySQS is currently available
• But you can also plug any GenStage producer

consulting and software engineering

Questions?
@plataformatec / plataformatec.com.br

