PAUL SCHOENFELDER

LUMEN

0 DOCKYARD

LUMEN

WHAT IS LUMEN?

A new compiler/runtime for Erlang/Elixir

Brings these languages to WebAssembly, with
support for other targets as well

Provides a path for building things in these languages
that are not necessarily well supported by the BEAM

0 DOCKYARD

LUMEN

WHY ARE WE BUILDING IT?

The future of the web lies with WebAssembly
Client-side ecosystem is in constant flux

Why split investment and expertise across two
ecosystems when one will do?

0 DOCKYARD

WHY ARE WE BUILDING IT?

WHY ERLANG/ELIXIR?

Better cross-pollination

Take advantage of the powerful tools provided
by Erlang/OTP on both server and client

Actors are an excellent pattern for building Uls

0 DOCKYARD

WHAT YOU NEED TO KNOW

WEBASSEMBLY

WHAT IS WEBASSEMBLY?

An instruction set + binary and textual formats

Designed for a stack-based virtual machine

Portable, embeddable

emory-safe, sandboxed

0 DOCKYARD

WEBASSEMBLY

HIGH-LEVEL DESIGN

Harvard Architecture (separate code/data)
Structured control flow vs arbitrary CFG

Only permits passing integers to/from JS*

* this is changing with Interface Types

0 DOCKYARD

TARGETING WASM WITH

LUMEN

0 DOCKYARD

WEBASSEMBLY

CONSTRAINTS

Code Size

Load Time

Concurrency Model

WEBASSEMBLY

JAVASCRIPT/DOM INTEROP

FF

Async Functions

Events

WEBASSEMBLY

BUT WHY NOT USE THE BEAM?

Runtime
Code Size

Performance

WHY NOT THE BEAM?

RUNTIME

Many APIls unavailable/unsupported
Incompatible Scheduler

JS Managed Types

WHY NOT THE BEAM?

CODE SIZE

Shipping BEAM bytecode is expensive

Weak dead-code elimination

WHY NOT THE BEAM?

PERFORMANCE

VM on a VM

JS engine unable to reason about bytecode

COMPILER

A NEW COMPILER/RUNTIME

Impose some restrictions
Ahead-of-Time vs VM

Take advantage of
existing tools

COMPILER

RESTRICTIONS

No hot-code loading

Allow dead-code elimination to remove code
which cannot be determined to be reachable
statically

0 DOCKYARD

COMPILER

AOT VS VM

Only pay for what you use
No interpretation overhead

Enables a wide-variety of optimizations

- Including target specitic optimizations

0 DOCKYARD

BUILD ON EXISTING TOOLS

LLVM

Rust

wasm-bindgen

0 DOCKYARD

COMPILER

KEY CHALLENGES

Recursion/tail-call optimization
Non-local returns/exceptions

Green threads/preemptive scheduling

\WebAssembly-specitic limitations

COMPILER

WEBASSEMBLY CHALLENGES

Abstract machine is stack-based
Requires structured control flow

No direct access to the stack

0 DOCKYARD

BEST SOLUTION?

CONTINUATIONS!

COMPILER

CONTINUATIONS

Represent jumps as calls to a continuation
All continuations are in tail position
Continuations never return

Can represent all control flow constructs

0 DOCKYARD

COMPILER

CONTINUATIONS

def fork(proc, k \\ nil) do
unless is_nil(k), do: enqueue(k)

proc.()
end

def yield(k) do
enqueue(k)
next = dequeuel()
unless is_nil(next), do: next.()
end
def loop(n, msg) do
1O.puts("#{msg}: #{n}")
yield(fn -> loop(n + 1, msQg) end)
end

def spawn_proc(msg) do
fn ->loop(10, msg) end

end

def start() do
fork(spawn_proc("A"), fn ->

fork(spawn_proc("B"))

end)

end

> Mod.start()
#=>A: 10
#=>B: 10
#=>A:9
#=>B:9

LUMEN COMPILER

Frontend

Middle Tier
Backend/Codegen

Accepts source filesin Edang | |JMEN COMPII ER

A Mix task is used to
produce source for Lumen Frontend

Supports richer diagnostics Midale Tier
than eric Backend/Codegen

AST lowered to EIR LUMEN COMPILER

Semantic analysis during

owering Frontend

EIR based on Thorin, a Middle Tier
graph-based higher-order IR Backend/ﬂodegen

CPS-like, without the LUMEN COMPILER

disadvantages

Easily transformed to SSA Fr.ontend.
Solid foundation for high- Middle Trer: EIR
level optimizations BackendlCodegen

Lowers from EIRto LLVM IR | |IMFN COMPII FR

Generates object files or

executable Frontend

Performs linking/link-time Middle Tier
optimization Backend/Codegen

PROJECT STATUS

LUMEN

0 DOCKYARD

PROJECT STATUS

CURRENT STATUS

There is an interpreter that can be used for
experimentation

Codegen backend is basically complete

Next release is waiting on a few PRs

o DOCKYARD

PROJECT STATUS

ROADMAP

Better type information
Auto-generated JS/DOM bindings
In-browser debugging

Support for a wider array of targets

