
LUMEN
PAUL SCHOENFELDER

LUMEN

WHAT IS LUMEN?

A new compiler/runtime for Erlang/Elixir

Brings these languages to WebAssembly, with
support for other targets as well

Provides a path for building things in these languages
that are not necessarily well supported by the BEAM

LUMEN

WHY ARE WE BUILDING IT?

The future of the web lies with WebAssembly

Client-side ecosystem is in constant flux

Why split investment and expertise across two
ecosystems when one will do?

WHY ARE WE BUILDING IT?

WHY ERLANG/ELIXIR?

Better cross-pollination

Take advantage of the powerful tools provided
by Erlang/OTP on both server and client

Actors are an excellent pattern for building UIs

WEBASSEMBLY
WHAT YOU NEED TO KNOW

WEBASSEMBLY

WHAT IS WEBASSEMBLY?

An instruction set + binary and textual formats

Designed for a stack-based virtual machine

Portable, embeddable

Memory-safe, sandboxed

WEBASSEMBLY

HIGH-LEVEL DESIGN

Harvard Architecture (separate code/data)

Structured control flow vs arbitrary CFG

Only permits passing integers to/from JS*
* this is changing with Interface Types

LUMEN
TARGETING WASM WITH

WEBASSEMBLY

CONSTRAINTS

Code Size

Load Time

Concurrency Model

WEBASSEMBLY

JAVASCRIPT/DOM INTEROP

FFI

Async Functions

Events

WEBASSEMBLY

BUT WHY NOT USE THE BEAM?

Runtime

Code Size

Performance

WHY NOT THE BEAM?

RUNTIME

Many APIs unavailable/unsupported

Incompatible Scheduler

JS Managed Types

WHY NOT THE BEAM?

CODE SIZE

Shipping BEAM bytecode is expensive

Weak dead-code elimination

WHY NOT THE BEAM?

PERFORMANCE

VM on a VM

JS engine unable to reason about bytecode

COMPILER

A NEW COMPILER/RUNTIME

Impose some restrictions

Ahead-of-Time vs VM

Take advantage of
existing tools

COMPILER

RESTRICTIONS

No hot-code loading

Allow dead-code elimination to remove code
which cannot be determined to be reachable
statically

COMPILER

AOT VS VM

Only pay for what you use

No interpretation overhead

Enables a wide-variety of optimizations

- Including target specific optimizations

COMPILER

BUILD ON EXISTING TOOLS

LLVM

Rust

wasm-bindgen

COMPILER

KEY CHALLENGES

Recursion/tail-call optimization

Non-local returns/exceptions

Green threads/preemptive scheduling

WebAssembly-specific limitations

COMPILER

WEBASSEMBLY CHALLENGES

Abstract machine is stack-based

Requires structured control flow

No direct access to the stack

CONTINUATIONS!
BEST SOLUTION?

COMPILER

CONTINUATIONS

Represent jumps as calls to a continuation

All continuations are in tail position

Continuations never return

Can represent all control flow constructs

COMPILER

CONTINUATIONS

def fork(proc, k \\ nil) do
 unless is_nil(k), do: enqueue(k)
 proc.()
end
def yield(k) do
 enqueue(k)
 next = dequeue()
 unless is_nil(next), do: next.()
end
def loop(n, msg) do
 IO.puts("#{msg}: #{n}")
 yield(fn -> loop(n + 1, msg) end)
end

def spawn_proc(msg) do
 fn -> loop(10, msg) end
end
def start() do
 fork(spawn_proc("A"), fn ->
 fork(spawn_proc("B"))
 end)
end

 > Mod.start()
 #=> A: 10
 #=> B: 10
 #=> A: 9
 #=> B: 9

LUMEN COMPILER
Frontend
Middle Tier
Backend/Codegen

LUMEN COMPILER
Frontend
Middle Tier
Backend/Codegen

Accepts source files in Erlang

A Mix task is used to
produce source for Lumen

Supports richer diagnostics
than erlc

LUMEN COMPILER
Frontend
Middle Tier
Backend/Codegen

AST lowered to EIR

Semantic analysis during
lowering

EIR based on Thorin, a
graph-based higher-order IR

LUMEN COMPILER
Frontend
Middle Tier: EIR
Backend/Codegen

CPS-like, without the
disadvantages

Easily transformed to SSA

Solid foundation for high-
level optimizations

LUMEN COMPILER
Frontend
Middle Tier
Backend/Codegen

Lowers from EIR to LLVM IR

Generates object files or
executable

Performs linking/link-time
optimization

LUMEN
PROJECT STATUS

PROJECT STATUS

CURRENT STATUS

There is an interpreter that can be used for
experimentation

Codegen backend is basically complete

Next release is waiting on a few PRs

PROJECT STATUS

ROADMAP

Better type information

Auto-generated JS/DOM bindings

In-browser debugging

Support for a wider array of targets

