
LECTOR IN CÓDIGO
ÁLVARO VIDELA - @OLD_SOUND

MICROSOFT

CLEMENTINA

CLEMENTINA

EXPLORE THE RELATION BETWEEN THE
PROCESS OF WRITING COMPUTER
PROGRAMS WITH THAT OF WRITING
LITERARY WORKS OF FICTION.

UMBERTO ECO

LECTOR IN
FABULUA

SIX WALKS IN THE
FICTIONAL WOODS

WHAT CAN WE LEARN FROM
THESE THEORIES TO BECOME
BETTER* PROGRAMMERS

WHAT CAN WE LEARN FROM
THESE THEORIES TO BECOME
BETTER* PROGRAMMERS?

BEST UNKNOWN PAPER

“A programmer does not primarily write
code; rather, he primarily writes to

another programmer about his problem
solution”

“Programs must be written for people to
read, and only incidentally for machineS

to execute”

LET’S TALK ABOUT
NODEJS

10 PRINT CHR$(205.5+RND(1)); : GOTO 10

“The presence of these optional spaces
indicates some concern for the people

who will deal with this code, rather than
merely the machine that will process it”

const http = require('http');

const hostname = '127.0.0.1';
const port = 3000;

const server = http.createServer((req, res) => {
 res.statusCode = 200;
 res.setHeader('Content-Type', 'text/plain');
 res.end('Hello World\n');
});

server.listen(port, hostname, () => {
 console.log(`running at http://${hostname}:${port}/`);
});

const
http=require("http"),hostname="127.0.0.1",port=3e3,serv
er=http.createServer((e,t)=>{t.statusCode=200,t.setHead
er("Content-Type","text/plain"),t.end("Hello
World\n")});server.listen(3e3,hostname,
()=>{console.log("Server running at http://
127.0.0.1:3000/")});

LITERATURE AND
PROGRAMMING

LITERATE
PROGRAMMING

Donald Knuth

“Instead of imagining that our main task
is to instruct a computer what to do, let
us concentrate rather on explaining to
human beings what we want a computer
to do”

LITERATE PROGRAMMING

▸ Introduces the WEB system

▸ Write documentation along with the code

▸ Partially adopted by tools like JavaDocs and the like

EXPLAINS HOW WEB WORKS,
BUT NOT HOW TO WRITE CODE
THAT’S EASIER TO UNDERSTAND

CYBERTEXT:
PERSPECTIVES ON
ERGODIC LITERATURE

Aarseth, Espen J

“[…] a search for literary value in texts
that are neither intended nor structured

as literature will only obscure the unique
aspects of these texts and transform a
formal investigation into an apologetic

crusade.”

“Programs are normally written with two
kinds of receivers in mind: the machines
and other programmers. This gives rise
to a double standard of aesthetics, often

in conflict: efficiency and clarity”

“a difference between writing and
programming, [is that] in programming,

the programmer gets feedback very early
on whether the program text is executable,

during compiling. Furthermore, they get
feedback on whether the program is

working as intended”

Hermans, Felienne, and Marlies Aldewereld

ABOUT EARLY FEEDBACK

▸ What does the program means?

▸ What process of the real world is trying to represent?

▸ How the problem was solved?

COMPARE THIS WITH
MUSIC INTERPRETATION

NOTES ON THE GUITAR

ABEL CARLEVARO

“CORRECT GUITAR PLAYING
IS UNCONCEIVABLE WITHOUT
CORRECT FINGERING”

Abel Carlevaro

ABEL CARLEVARO

ABOUT EARLY FEEDBACK

▸ Knuth: Is 2 a random number?

▸ Is a square function that returns a hardcoded 25 a correct
implementation?

▸ As long as we provide [5, -5] as arguments, it is correct.

▸ TDD advocates this kind of program building

“Program testing can be used to show
the presence of bugs, but never to show

their absence!”

Edsger Dijkstra

ABOUT EARLY FEEDBACK

▸ Knuth: Is 2 a random number?

▸ Is a square function that returns a hardcoded 25 a correct
implementation?

▸ As long as we provide [5, -5] as arguments, it is correct

▸ TDD advocates this kind of program building

▸ QuickCheck tries to alleviate this problem

HOW CAN WE SHARE
KNOWLEDGE BETWEEN
PROGRAMMERS?

“THE CODE SPEAKS
FOR ITSELF”

WE ARE NOT
ADVERSARIES

IMAGINE IF EVERY TIME WE
TRIED TO READ A BOOK, WE
HAD TO PLAY CODE BREAKERS?

UNLESS WE WERE
READING
FINNEGANS WAKE…

PROGRAMMING AS
THEORY BUILDING

Peter Naur

“[…] A PERSON WHO HAS OR POSSESSES
A THEORY IN THIS SENSE KNOWS HOW TO
DO CERTAIN THINGS AND IN ADDITION CAN
SUPPORT THE ACTUAL DOING WITH
EXPLANATIONS, JUSTIFICATIONS, AND
ANSWERS TO QUERIES, ABOUT THE
ACTIVITY OF CONCERN”

“[…] WHAT HAS TO BE BUILT BY
THE PROGRAMMER IS A THEORY
OF HOW CERTAIN AFFAIRS OF THE
WORLD WILL BE HANDLED BY, OR
SUPPORTED BY, A COMPUTER
PROGRAM”

THIS THEORY IS VERY HARD
TO SHARE, IT WON’T BE
REFLECTED IN
DOCUMENTATION OR THE
PROGRAM TEXT

HOW CAN WE SHARE
THIS THEORY?

THE
ENCYCLOPEDIA

THE ENCYCLOPEDIA

▸ There’s the Encyclopedia

▸ And there’s the “encyclopedia”

▸ All the world’s knowledge vs. my knowledge

“THE COMPETENCE OF THE
DESTINATARY IS NOT NECESSARILY
THAT OF THE SENDER”

ABSENCE OF
DETAILS

WE FILL IN DETAILS FROM
OUR OWN ENCYCLOPEDIA

PARASITICAL
WORLDS

“fictional worlds are parasitical worlds
because, if alternative properties are not

spelled out, we take for granted the
properties holding in the real world”

THE MODEL
READER

MODEL READER

▸ Not the empirical reader

▸ Lives in the mind of the author (the empirical one)

▸ It’s built as the author writes the story

▸ Helps the author decide how much detail to include in the
story

TEXTUAL
COOPERATION

DOGS MUST BE CARRIED ON ESCALATOR

▸ Does it mean that you must carry a dog in the escalator?

▸ Are you going to be banned from the escalator unless you
find a stray dog to carry?

▸ “Carried” is to be taken metaphorically and help dogs get
through life?

DOGS MUST BE CARRIED ON ESCALATOR

▸ How do I know this is not a decoration?

▸ I need to understand that the sign has been placed there
by some authority

▸ Conventions: I understand that “escalator” means this
escalator and not some escalator in Paraguay

▸ “Must be” means must be now

“A text is a lazy (or economic) mechanism
that lives on the surplus value of meaning

introduced by the recipient”

“A TEXT WANTS SOMEONE
TO HELP IT WORK”

READING IS ESSENTIALLY A WORK
OF COOPERATION BETWEEN THE
AUTHOR AND THE READER

A STRATEGIC GAME
BETWEEN AUTHOR AND
READER

NAPOLEON VS
WELLINGTON

BOURDIEU &
TEXTUAL DEVICES

DEVICES TO HELP PROGRAMMERS

▸ Type declarations

▸ Documentation

▸ Paratexts

PARATEXTS

"THE “PARATEXT” CONSISTS OF THE WHOLE
SERIES OF MESSAGES THAT ACCOMPANY
AND HELP EXPLAIN A GIVEN TEXT—
MESSAGES SUCH AS ADVERTISEMENTS,
JACKET COPY, TITLE, SUBTITLES,
INTRODUCTION, REVIEWS, AND SO ON."

Eco quoting Genette

“TO INDICATE WHAT IS AT STAKE, WE CAN
ASK ONE SIMPLE QUESTION AS AN
EXAMPLE: LIMITED TO THE TEXT ALONE AND
WITHOUT A GUIDING SET OF DIRECTIONS,
HOW WOULD WE READ JOYCE'S ULYSSES IF
IT WERE NOT ENTITLED ULYSSES?”

Gérard Genette

PARATEXTS IN CODE

▸ Documentation

▸ package names

▸ folder structure

▸ pragmas (as in Haskell)

▸ imports (hiding things from the Prelude or overloading it)

▸ compiler flags

▸ running mode (test, production, benchmarks)

A PRIVILEGED PLACE OF A PRAGMATICS
AND A STRATEGY, OF AN INFLUENCE ON
THE PUBLIC, AN INFLUENCE THAT -
WHETHER WELL OR POORLY UNDERSTOOD
AND ACHIEVED - IS AT THE SERVICE OF A
BETTER RECEPTION FOR THE TEXT AND A
MORE PERTINENT READING OF IT

Gérard Genette

KEEPING PARATEXTS
RELEVANT

HOW TO KEEP
COMMENTS UP TO DATE?

NOT EVEN CERVANTES
ESCAPED THIS FATE

IN DON QUIXOTE, THE ORIGINAL
DESCRIPTION FOR CHAPTER X
DOESN’T MATCH THE CONTENTS OF
THE CHAPTER!

CONSIDER THIS
CODE

class User {
 String username;
 String password;
 String role;

 User(String username, String password, String role) {
 this.username = username;
 this.password = password;
 this.role = role;
 }

 public String getUsername() {return username;}
 public String getPassword() {return password;}
 public String getRole() {return role;}
}

User user = new User('alice', 'secret', 'admin');
assertEquals(user.getUsername(), 'alice');
assertEquals(user.getPassword(), 'secret');
assertEquals(user.getRole(), 'admin');

THE PREVIOUS TEST CAN GIVE US
FEEDBACK ABOUT THE CODE WORKING AS
EXPECTED, BUT WE ARE STILL IN THE DARK
ABOUT WHAT IS THIS CLASS PURPOSE, THAT
IS, WHAT CONCEPT OF THE REAL WORLD
THIS CLASS IS TRYING TO REPRESENT.

class User {
 String username;
 String password;
 String role;

 User(String username, String password, String role) {
 this.username = username;
 this.password = password;
 this.role = role;
 }

 public String getUsername() {return username;}
 public String getPassword() {return password;}
 public String getRole() {return role;}
}

package database;

class User {
 String username;
 String password;
 String role;

 User(String username, String password, String role) {
 this.username = username;
 this.password = password;
 this.role = role;
 }

 public String getUsername() {return username;}
 public String getPassword() {return password;}
 public String getRole() {return role;}
}

package model;

class User {
 String username;
 String password;
 String role;

 User(String username, String password, String role) {
 this.username = username;
 this.password = password;
 this.role = role;
 }

 public String getUsername() {return username;}
 public String getPassword() {return password;}
 public String getRole() {return role;}
}

class Person {
 String name;
 String age;

 User(String name, String age) {
 this.name = name;
 this.age = age;
 }

 public String getName() {return name;}
 public String getAge() {return age;}
}

// This is not a person
class Person {
 String name;
 String age;

 User(String name, String age) {
 this.name = name;
 this.age = age;
 }

 public String getName() {return name;}
 public String getAge() {return age;}
}

HOW TO BUILD THE MODEL
READER FOR OUR CODE?

METAPHORS

CHOOSING THE RIGHT
DATA STRUCTURE

CHOOSE THE RIGHT DATA STRUCTURE

CHOOSE THE RIGHT DATA STRUCTURE

▸ Array

CHOOSE THE RIGHT DATA STRUCTURE

▸ Array

▸ Set

CHOOSE THE RIGHT DATA STRUCTURE

▸ Array

▸ Set

▸ LinkedList

CHOOSE THE RIGHT DATA STRUCTURE

▸ Array

▸ Set

▸ LinkedList

▸ Queue

CHOOSE THE RIGHT DATA STRUCTURE

▸ Array

▸ Set

▸ LinkedList

▸ Queue

▸ Stack

A PROGRAM’S EXPLANATORY
POWER IS THE MEASURE OF
ITS OWN ELEGANCE

DATA STRUCTURES
HAVE EXPLANATORY
POWER

COGNITIVE LEAPS

CLEAN CODE

CLEAN CODE?

CLEAN CODE
DOESN’T EXIST

CIAO

"Hegemonic culture propagates its own
values and norms so that they become
the "common sense" values of all and

thus maintain the status quo”

ARE
YOU A
COMMU
NIST!?

ARE YOU
AGAINST
BELKA &
STRELKA?

CLEAN CODE

CLEAN CODE

▸ Requires a shared encyclopedia

▸ Shared reading competencies

▸ Old by definition

MODES OF
INTERPRETATION

“Semantic interpretation is the result of
the process by which the reader, facing a
Linear Text Manifestation, fills it up with a

given meaning.”

“Critical Interpretation is, on the contrary, a
metalinguistic activity which aims at

describing and explaining for which formal
reasons a given text produces a given

response.”

LET’S GET
CRITICAL

THANK YOU
@old_sound

REFERENCES

▸ Aarseth, Espen J. Cybertext: Perspectives on Ergodic Literature. Johns
Hopkins University Press, 1997.

▸ Beck, Kent. Test-Driven Development: by Example. Addison-Wesley,
2006.

▸ Berger, Peter L., and Thomas Luckmann. The Social Construction of
Reality: a Treatise in the Sociology of Knowledge. Penguin, 1991.

▸ Borges, Jorge Luis, and Andrew Hurley. Collected Fictions. Penguin
Books, 1999.

REFERENCES

▸ Carlevaro, Abel. Serie Didactica: Para Guitarra. Barry, 1966.

▸ Eagleton, Terry. Literary Theory: an Introduction. Blackwell Publishing,
2015.

▸ Eco, Umberto, and Anthony Oldcorn. From the Tree to the Labyrinth:
Historical Studies on the Sign and Interpretation. Harvard University
Press, 2014.

▸ Eco, Umberto. Lector in Fabula: La Cooperazione Interpretativa Nei
Testi Narrativi. Bompiani, 2016.

REFERENCES

▸ Eco, Umberto. Six Walks in the Fictional Woods. Harvard Univ. Press,
2004.

▸ Genette, Gérard. Paratexts: Thresholds of Interpretation. Cambridge
Univ. Press, 2001.

▸ Gärdenfors, Peter. Geometry of Meaning: Semantics Based on
Conceptual Spaces. The MIT Press, 2017.

▸ Hermans, Felienne, and Marlies Aldewereld. “Programming Is Writing Is
Programming.” Proceedings of the International Conference on the Art,
Science, and Engineering of Programming - Programming '17, 2017,
doi:10.1145/3079368.3079413.

REFERENCES

▸ Kent, William, and Steve Hoberman. Data and Reality: a Timeless Perspective
on Perceiving and Managing Information in Our Imprecise World. Technics
Publications, 2012.

▸ Lewis, James, and Martin Fowler. “Microservices.” Martinfowler.com, 25 Mar.
2014, martinfowler.com/articles/microservices.html.

▸ Moore. “What a Programmer Does.” Datamation, Apr. 1967, pp. 177–178.,
archive.computerhistory.org/resources/text/Knuth_Don_X4100/PDF_index/
k-9-pdf/k-9-u2769-1-Baker-What-Programmer-Does.pdf.

▸ Naur, Peter. “Programming as Theory Building.” Microprocessing and
Microprogramming, vol. 15, no. 5, 1985, pp. 253–261.,
doi:10.1016/0165-6074(85)90032-8.

REFERENCES

▸ “Random Numbers.” The Art of Computer Programming, by Donald
Ervin Knuth, vol. 2, Addison-Wesley, 2011.

▸ Steele, Julie, and Noah P. N. Iliinsky. Beautiful Visualization. O'Reilly,
2010.

▸ Videla, Alvaro. “Metaphors We Compute By.” Communications of the
ACM, vol. 60, no. 10, 2017, pp. 42–45., doi:10.1145/3106625.

