
Misadventures
With Terraform

Matthew Revell
Senior DevOps Consultant

#CodeMeshLDN

@nightowlmatt

In 5 minutes or less

Introduction To Terraform

#CodeMeshLDN

Terraform is an Infrastructure as
Code product from Hashicorp.

Used to automate provisioning of
cloud infrastructure, SaaS, and
other software.

Uses a plugin framework, called
‘providers’ to support a wide
range of vendors.

What is Terraform?

#CodeMeshLDN

Terraform is an Infrastructure as
Code product from Hashicorp.

Used to automate provisioning of
cloud infrastructure, SaaS, and
other software.

Uses a plugin framework, called
‘providers’ to support a wide
range of vendors.

What is Terraform?

#CodeMeshLDN

provider "aws" {

 version = "~> 2.26"

}

resource "aws_vpc" "example" {

 cidr_block = "10.0.0.0/16"

}

Terraform Resources

#CodeMeshLDN

module "local" {

 source = "../modules/app"

 instance_type = "t3.medium"

}

module "git" {

 source = "git::https://example.com/app.git?ref=0.4.20"

 instance_type = "m4.xlarge"

}

Terraform Modules

#CodeMeshLDN

terraform {

 backend "s3" {

 bucket = "terraform-states"

 key = "example/terraform.tfstate"

 }

}

Terraform Statefile

#CodeMeshLDN

Terraform Plan

#CodeMeshLDN

Terraform Apply

#CodeMeshLDN

How Did I Get Here?

#CodeMeshLDN

In the beginning...

Bash &
Python

#CodeMeshLDN

A few years ago...

Terraform
0.6.xx

Bash &
Python

#CodeMeshLDN

Into the future...

Terraform
0.6.xx

Terraform
0.12.xx

Bash &
Python

#CodeMeshLDN

when modules get too small

Honey,
 I Shrunk The Modules

#CodeMeshLDN

Monolith Terraform State

#CodeMeshLDN

Reusable Modules

#CodeMeshLDN

Single Resource Modules

#CodeMeshLDN

Complex Deployment

#CodeMeshLDN

Consider whether a
single resource

module adds any
value

Consider whether
the additional

complexity is worth
the perceived value

Consider whether
the module will be

usable by the
intended

consumer(s)

Value Complexity Usability

Lessons Learned (small modules)

#CodeMeshLDN

pray the code works the second time

Run Once And Forget

#CodeMeshLDN

A Service

#CodeMeshLDN

Two Services

#CodeMeshLDN

Two Connected Services

#CodeMeshLDN

A Service On FIRE!

#CodeMeshLDN

Testing modules in
isolation can only

validate the
internals

Full deployment
tests are essential

to validate the
entire Terraform

structure

A dedicated account
can allow

continuous testing
without disruption

Testing Testing Testing

Lessons Learned (running code once)

#CodeMeshLDN

in this case dividing Terraform States

How To Slice The Cake

Terraform States and Modules

#CodeMeshLDN

Terraform States and Modules

#CodeMeshLDN

Resources should
be grouped such
that states do not
grow exponentially

States should have
a limited scope to
minimise impact in

the event of
mistakes

Teams should be
able to manage

their own Terraform
independently

Scalability Blast Radius Ownership

Lessons Learned (dividing states)

#CodeMeshLDN

but DRY is divine

To dir Is Human

#CodeMeshLDN

terraform
 + env
 + dev
 - terraform.tfvars
 - backend.tf
 - main.tf
 + prod
 - terraform.tfvars
 - backend.tf
 - main.tf

Terraform Code Repo

#CodeMeshLDN

variable "instance_type" {}

module "vpc" {

 source = "git::https://example.com/vpc.git?ref=0.1.0"

}

module "app" {

 source = "git::https://example.com/app.git?ref=0.4.20"

 instance_type = var.instance_type

}

Terraform main.tf

#CodeMeshLDN

instance_type = "m4.large"

instance_count = "3"

Terraform terraform.tfvars

#CodeMeshLDN

terraform {

 backend "s3" {

 bucket = "terraform-states"

 key = "prod/terraform.tfstate"

 }

}

Terraform backend.tf

#CodeMeshLDN

terraform
 + env
 + dev
 - terraform.tfvars
 - backend.tf
 - main.tf
 + prod
 - terraform.tfvars
 - backend.tf
 - main.tf

Terraform Code Repo

#CodeMeshLDN

●  Thin wrapper for Terraform

●  Allows for easier management of backends

●  Reduces amount of repeated code

●  Developed by Gruntworks

Terragrunt

Image courtesy of Gruntworks Inc.

#CodeMeshLDN

terraform
 + env
 - common.tfvars
 + dev
 - terraform.tfvars
 + prod
 - terraform.tfvars

Terragrunt Code Repo

#CodeMeshLDN

terragrunt = {
 remote_state {
 backend = "s3"
 config {
 bucket = "my-terraform-state"
 key = "${path_relative_to_include()}/terraform.tfstate"
 }
 }
}

instance_type = "m4.medium"

Terragrunt common.tfvars

#CodeMeshLDN

terragrunt = {
 include {
 path = "../common.tfvars"
 }

 terraform {
 source = "git::https://example.com/deployment.git?ref=v0.0.1"
 }
}

instance_type = "m4.xlarge"

Terragrunt terraform.tfvars

#CodeMeshLDN

terraform
 + env
 - common.tfvars
 + dev
 - terraform.tfvars
 + prod
 - terraform.tfvars

Terragrunt Code Repo

#CodeMeshLDN

Repeated code and
copy and pasting
will definitely lead

to mistakes

A lack of clarity and
readability will also
lead to confusion

and mistakes

Tooling can help
maintain clean code

in complex
deployments

Keep it DRY Clarity Tooling

Lessons Learned (repo structures)

#CodeMeshLDN

●  Terragrunt
 - Filling the gaps in Terraform
https://github.com/gruntwork-io/terragrunt

●  Atlantis
 - Bringing GitOps to Terraform workflows
https://www.runatlantis.io

●  Kapitan
 - General purpose templating engine
https://kapitan.dev

Additional tooling links

#CodeMeshLDN

Concluding Remarks

#CodeMeshLDN

Questions

#CodeMeshLDN

