

A PostScript to Functional Geometry

Functional Geometry

Peter Henderson
Department of Electronics and Computer Science
University of Southampton
Southampton, SO17 1BJ, UK
p.henderson@ecs.soton.ac.uk
http://www.ecs.soton.ac.uk/ ${ }^{\sim} p h$

October, 2002
Abstract. An algebra of pictures is described that is sufficiently powerful to denote the structure of a well-known Escher woodcut, Square Limit. A decomposition of the picture that is reasonably faithful to Escher's original design is given. This illustrates how a suitably chosen algebraic specification can be both a clear description and a practical implementation method. It also allows us to address some of the criteria that make a good algebraic description.

Keywords: Functional programming, graphics, geometry, algebraic style, architecture, specification.

A picture is an example of a complex object that can be described in terms of its parts.

Let us define a picture as a function which takes three arguments, each being two-space vectors and returns a set of graphical objects to be rendered on the output device.
type Box = $\{\mathrm{a}:$ Vector
b : Vector
c : Vector \}
type Picture = Box $->$ Rendering

george

also george

still george

turn

$$
=>
$$

turnBox : Box -> Box turn Box $\{a, b, c\}=\{a=a d d a b$

$$
, b=c
$$

$$
\text { , } c=\operatorname{neg} b\}
$$

turn : Picture -> Picture turn $p=$ turnBox $\gg p$
turn

turn >> turn

turn >> turn >> turn

turn \gg turn \gg turn \gg turn

flip

=>
flipBox : Box -> Box flipBox $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\{\mathrm{a}=\mathrm{add} \mathrm{a} b$

$$
\text { , } \mathrm{b}=\text { neg } \mathrm{b}
$$

$$
, c=c\}
$$

flip : Picture -> Picture flip p = flipBox >> p

flip

flip >> flip

toss
$=>$
tossBox : Box -> Box
tossBox $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=$
\{ a = add a (scale 0.5 (add bc))
, b = scale 0.5 (add bc)
, $c=$ scale 0.5 (sub cb) \} ~
toss : Picture -> Picture toss p = tossBox >> p
toss

above george ((turn >> turn) george)

aboveRatio : Int -> Int -> Pic -> Pic -> Pic aboveRatio m n pi p2 =
box ->
let

$$
f=m /(m+n)
$$

(b1, b2) = splitVertically f box
in

$$
(\mathrm{p} 1 \mathrm{~b} 1)++(\mathrm{p} 2 \mathrm{~b} 2)
$$

above : Pic -> Pic -> Pic above pi p2 = aboveRatio 11
above george ((turn >> turn) george)

above george ((turn >> turn) george)

mirrorgeorge

mirrorgeorge

aboveRatio 21 mirrorgeorge george

$=>$

beside (flip george) george

besideRatio 12 george twingeorge

quartet g1 g2 g3 g4

$$
=>
$$

quartet : P -> P -> P -> P -> P quartet nw ne sw se = above (beside nw ne) (beside sw se)

toss

nonet h e $n d e r s o n$

H E N
 D E R \Rightarrow
 HEN
 D ER
 5 (N
 5 D N

```
nonet : P -> P >> P > P >> P >> P >> P >> P >> P -> P
    let
        row w m e = besideRatio 1 2 w (beside m e)
        col n m s = aboveRatio 1 2 n (above m s)
        in
        col (row nw nm ne)
        (row mw mm me)
        (row sw sm se)
```


nonets are just pictures

H E N D
 H E N
 5 an

a fish picture

over fish ((turn >> turn) fish)

over : Pic -> Pic -> Pic over p1 p2
 box -> p1 box ++ p2 box

ttile

ttile : Picture -> Picture ttile $\mathrm{p}=$
let

$$
\mathrm{pn}=(\text { toss } \gg \mathrm{flip}) \mathrm{p}
$$

$$
\text { pe }=(\text { turn } \gg \text { turn } \gg \text { turn) } p
$$

in
over p (over pn pe)

ttile

utile

$$
\begin{aligned}
& \text { utile : Picture -> Picture } \\
& \text { utile } p= \\
& \text { let } \\
& \mathrm{pn}=(\text { toss } \gg \mathrm{flip}) \mathrm{p} \\
& \text { pw = turn pn } \\
& \text { ps = turn pw } \\
& \text { pe }=\text { turn } p s \\
& \text { in } \\
& \text { over pn (over pw (over ps pe)) }
\end{aligned}
$$

utile

side 0

$$
=>
$$

side 1

$$
=>
$$

side 2

$$
=>
$$

side 3

$$
\begin{aligned}
& \text { side : Int -> Picture -> Picture } \\
& \text { side } n \text { p = } \\
& \text { if } n<=0 \text { then blank } \\
& \text { else } \\
& \text { let } \\
& s=\text { side (n - 1) p } \\
& t=\text { ttile } p \\
& \text { in } \\
& \text { quartet } s \text { s (turn } t) ~ t
\end{aligned}
$$

corner 0

$$
=>
$$

corner 1

$$
=>
$$

corner 2

$$
=>
$$

corner 3


```
corner : Int -> Picture -> Picture
corner n p =
    if n <= 0 then blank
    else
    let
\[
\begin{aligned}
& c=\operatorname{corner}(n-1) p \\
& s=\operatorname{side}(n-1) p
\end{aligned}
\]
in
```

$$
\text { quartet } c \text { s (turn s) (utile p) }
$$

square-limit 0

$$
=>
$$

square-limit 1

square-limit 2

square-limit 3


```
squareLimit : Int -> Picture -> Picture
squareLimit n p =
    let
        mm = utile p
        nw = corner n p
        sw = turn nw
        se = turn sw
        ne = turn se
        nm = side n p
        mw = turn nm
        sm = turn mw
        me = turn sm
    in
        nonet nw nm ne mw mm me sw sm se
```


Henderson's square limit

A picture needs to be rendered on a printer or a screen by a device that expects to be given a sequence of commands.

Programming that sequence of commands directly is much harder than having an application generate the commands automatically from the simpler, denotational description.

The pictures were drawn by a Java program which generated PostScript commands directly. The Java was written in a functional style so that the definitions which were executed were exactly as they appear in the paper.

The pictures were drawn by a PostScript program which generated PostScript commands directly. The PostScript was written in a functional style so that the definitions which were executed were not unlike as they appear in the paper.

It probably is true that PostScript is not everyone's first choice as a programming language. But let's put that premise behind us, and assume that you need (or want) to write a program in the PostScript language.

