
A PostScript to Functional Geometry @einarwh

=>



A PostScript to Functional Geometry @einarwh

<= =>



A picture is an example
of a complex object that
can be described in terms
of its parts.

A PostScript to Functional Geometry @einarwh

<= =>



Let us define a picture as a 
function which takes three
arguments, each being two-space 
vectors and returns a set of
graphical objects to be
rendered on the output device.

A PostScript to Functional Geometry @einarwh

<= =>



type Box = { a : Vector
 b : Vector
 c : Vector }

type Picture = Box -> Rendering

A PostScript to Functional Geometry @einarwh

<= =>



george

A PostScript to Functional Geometry @einarwh

<= =>



also george

A PostScript to Functional Geometry @einarwh

<= =>



still george

A PostScript to Functional Geometry @einarwh

<= =>



turn

=>

A PostScript to Functional Geometry @einarwh

<= =>



turnBox : Box -> Box 
turnBox { a, b, c } = { a = add a b 

, b = c 
, c = neg b }

turn : Picture -> Picture 
turn p = turnBox >> p 

A PostScript to Functional Geometry @einarwh

<= =>



turn

=>

A PostScript to Functional Geometry @einarwh

<= =>



turn >> turn

=>

A PostScript to Functional Geometry @einarwh

<= =>



turn >> turn >> turn

=>

A PostScript to Functional Geometry @einarwh

<= =>



turn >> turn >> turn >> turn

=>

A PostScript to Functional Geometry @einarwh

<= =>



flip

=>

A PostScript to Functional Geometry @einarwh

<= =>



flipBox : Box -> Box 
flipBox { a, b, c } = { a = add a b 

, b = neg b 
, c = c }

flip : Picture -> Picture 
flip p = flipBox >> p 

A PostScript to Functional Geometry @einarwh

<= =>



flip

=>

A PostScript to Functional Geometry @einarwh

<= =>



flip >> flip

=>

A PostScript to Functional Geometry @einarwh

<= =>



toss

=>

A PostScript to Functional Geometry @einarwh

<= =>



tossBox : Box -> Box 
tossBox { a, b, c } = 

{ a = add a (scale 0.5 (add b c))
, b = scale 0.5 (add b c)
, c = scale 0.5 (sub c b) }

toss : Picture -> Picture 
toss p = tossBox >> p 

A PostScript to Functional Geometry @einarwh

<= =>



toss

=>

A PostScript to Functional Geometry @einarwh

<= =>



above george ((turn >> turn) george)

=>

A PostScript to Functional Geometry @einarwh

<= =>



aboveRatio : Int -> Int -> Pic -> Pic -> Pic
aboveRatio m n p1 p2 =

\box ->
let

f = m / (m + n)
(b1, b2) = splitVertically f box

in
(p1 b1) ++ (p2 b2)

above : Pic -> Pic -> Pic
above p1 p2 = aboveRatio 1 1

A PostScript to Functional Geometry @einarwh

<= =>



above george ((turn >> turn) george)

A PostScript to Functional Geometry @einarwh

<= =>



above george ((turn >> turn) george)

A PostScript to Functional Geometry @einarwh

<= =>



mirrorgeorge

A PostScript to Functional Geometry @einarwh

<= =>



mirrorgeorge

A PostScript to Functional Geometry @einarwh

<= =>



aboveRatio 2 1 mirrorgeorge george

=>

A PostScript to Functional Geometry @einarwh

<= =>



beside (flip george) george

=>

A PostScript to Functional Geometry @einarwh

<= =>



besideRatio 1 2 george twingeorge

=>

A PostScript to Functional Geometry @einarwh

<= =>



quartet g1 g2 g3 g4

=>

A PostScript to Functional Geometry @einarwh

<= =>



quartet : P -> P -> P -> P -> P
quartet nw ne sw se =

above (beside nw ne)
(beside sw se)

A PostScript to Functional Geometry @einarwh

<= =>



toss

=>

A PostScript to Functional Geometry @einarwh

<= =>



nonet h e n d e r s o n

=>

A PostScript to Functional Geometry @einarwh

<= =>



nonet : P -> P -> P -> P -> P -> P -> P -> P -> P -> P
let

row w m e = besideRatio 1 2 w (beside m e)
col n m s = aboveRatio 1 2 n (above m s)

in
col (row nw nm ne)

(row mw mm me)
(row sw sm se)

A PostScript to Functional Geometry @einarwh

<= =>



nonets are just pictures

A PostScript to Functional Geometry @einarwh

<= =>



a fish picture

A PostScript to Functional Geometry @einarwh

<= =>



over fish ((turn >> turn) fish)

=>

A PostScript to Functional Geometry @einarwh

<= =>



over : Pic -> Pic -> Pic
over p1 p2 

\box -> p1 box ++ p2 box 

A PostScript to Functional Geometry @einarwh

<= =>



ttile

=>

A PostScript to Functional Geometry @einarwh

<= =>



ttile : Picture -> Picture
ttile p =

let
pn = (toss >> flip) p
pe = (turn >> turn >> turn) p

in
over p (over pn pe)

A PostScript to Functional Geometry @einarwh

<= =>



ttile

A PostScript to Functional Geometry @einarwh

<= =>



utile

=>

A PostScript to Functional Geometry @einarwh

<= =>



utile : Picture -> Picture
utile p =

let
pn = (toss >> flip) p
pw = turn pn
ps = turn pw
pe = turn ps

in
over pn (over pw (over ps pe))

A PostScript to Functional Geometry @einarwh

<= =>



utile

A PostScript to Functional Geometry @einarwh

<= =>



side 0

=>

A PostScript to Functional Geometry @einarwh

<= =>



side 1

=>

A PostScript to Functional Geometry @einarwh

<= =>



side 2

=>

A PostScript to Functional Geometry @einarwh

<= =>



side 3

=>

A PostScript to Functional Geometry @einarwh

<= =>



side : Int -> Picture -> Picture
side n p =

if n <= 0 then blank
else

let
s = side (n - 1) p
t = ttile p

in
quartet s s (turn t) t

A PostScript to Functional Geometry @einarwh

<= =>



corner 0

=>

A PostScript to Functional Geometry @einarwh

<= =>



corner 1

=>

A PostScript to Functional Geometry @einarwh

<= =>



corner 2

=>

A PostScript to Functional Geometry @einarwh

<= =>



corner 3

=>

A PostScript to Functional Geometry @einarwh

<= =>



corner : Int -> Picture -> Picture
corner n p =

if n <= 0 then blank
else

let
c = corner (n - 1) p
s = side (n - 1) p

in
quartet c s (turn s) (utile p)

A PostScript to Functional Geometry @einarwh

<= =>



square-limit 0

=>

A PostScript to Functional Geometry @einarwh

<= =>



square-limit 1

=>

A PostScript to Functional Geometry @einarwh

<= =>



square-limit 2

=>

A PostScript to Functional Geometry @einarwh

<= =>



square-limit 3

=>

A PostScript to Functional Geometry @einarwh

<= =>



squareLimit : Int -> Picture -> Picture
squareLimit n p =

let
mm = utile p
nw = corner n p
sw = turn nw
se = turn sw
ne = turn se
nm = side n p
mw = turn nm
sm = turn mw
me = turn sm

in
nonet nw nm ne mw mm me sw sm se

A PostScript to Functional Geometry @einarwh

<= =>



Henderson's square limit

A PostScript to Functional Geometry @einarwh

<= =>



A picture needs to be rendered
on a printer or a screen by a 
device that expects to be given
a sequence of commands.

A PostScript to Functional Geometry @einarwh

<= =>



Programming that sequence of commands
directly is much harder than having
an application generate the commands
automatically from the simpler,
denotational description.

A PostScript to Functional Geometry @einarwh

<= =>



The pictures were drawn by a
Java program which generated
PostScript commands directly.
The Java was written in a 
functional style so that the 
definitions which were executed 
were exactly as they appear in
the paper.

A PostScript to Functional Geometry @einarwh

<= =>



The pictures were drawn by a
PostScript program which generated
PostScript commands directly.
The PostScript was written in a 
functional style so that the 
definitions which were executed 
were not unlike as they appear in
the paper.

A PostScript to Functional Geometry @einarwh

<= =>



It probably is true that PostScript
is not everyone's first choice as a
programming language. But let's put
that premise behind us, and assume
that you need (or want) to write a
program in the PostScript language.

A PostScript to Functional Geometry @einarwh

<=


