

LARGE SCALE DISTRIBUTED
VIDEO PROCESSING WITH OTP

Haofel Wang
Director of Engineering @ Tubil

What is Tubi?

VOD streaming service

100% free

Over 25 different devices

In-stream advertising

Massive content library, over 20k movies and tv shows

© Tubi, proprietary and confidential

Video Processing

High quality sources. Minimally compressed source videos, ranging from 50GB to 600GB.
Massive amount of content ingestions.
Need to support over 25 devices.

—
—
—
—~
-
y
)
—

© Tubi, proprietary and confidential

Parallel Processing

e Process each small
chunk in parallel.

o One video can be
broken down to

thousands of tasks to o | 4 | | ‘ =
process in parallel
o CPU heavy tasks | | | , ,
o 10 heavy task B =y | |
o Network heavy tasks]
. Tasks have s — ' ! == >
dependencies.
T - a e o |

Transcodes Transcode Streamlng
Bitrate E i E i E i i i E Bitrate E
Same Node

Processing On Processing On Processing On Processing On Processing On
Same Node Same Node Same Node Same Node Same Node

Source

© Tubi, proprietary and confidential

Parallel Processing

J’QRT_LOG :shaka_build
TASK_RUNNER_INSTANCE:shaka_build

TASK_RUNNER_INSTANCE:download TASK_RUNNER_INSTANCE:hls_split_manifest

.TASK_RUNN ER_INSTANCE:check_storage
TASK_INSTANCE:shaka_build b

.TASK_INSTANCE:download ‘ .TASK_INSTANCE:check_storage

.TASK_IN STANCE:hls_split_manifest
[TASK_RUNNER_INSTANCE:batch_upload

TASK:check_stdiage

‘ .TASK:shaka_build

.TASK:download

A .TASK:hls_split_manifest - TASK_INSTANCE:batch_upload

‘TASK:batch_upload

.T ASK_RUNNER_INSTANCE:download

e .TASK_IN STANCE:download

JOB packaping ». . TASK:download

© Tubi, proprietary and confidential

Why Elixir/Erlang OTP?

Supervisor: monitor the health of the child process, restart as needed

@spec start_link(node(), map()) :: GenServer.on_start()

def start_link(node_name, args) do
{:0k, pid} = :rpc.call(node_name, GenServer, :start, [__MODULE__, args])
Process.link(pid)

{:0k, pid}
end

© Tubi, proprietary and confidential

Why Elixir/Erlang OTP?

Supervisor: monitor the health of the child process, restart as needed

def handle_info({:EXIT, pid, :normal}, state) do
if Models.Task.unfinished_count(state.job_id) == 6 do
{:stop, :normal, state}
else
{:noreply, %{state | tasks: Map.drop(state.tasks, [pid])}}
end

end

© Tubi, proprietary and confidential

Why Elixir/Erlang OTP?

Supervisor: monitor the health of the child process, restart as needed

def handle_info({:EXIT, pid, _error}, state) do
{task_id, rest_tasks} = Map.pop(state.tasks, pid)
with true <- not is_nil(task_id),
task = Models.Task.get_by_id(task_id),
true <- task.rest_restarts > 0 do
{:noreply, %{state | tasks: rest_tasks}}
else
false ->
{:stop, {:shutdown, :job_terminated}, %{state | tasks: rest_tasks}}

end
end

© Tubi, proprietary and confidential

Why Elixir/Erlang OTP?

Cluster is built-in: adding new node is simple, remote process is seemingless

@impl GenServer

def handle_info(:register, %{manager_node_name: mgr_node, quota: quota} = state) do

mgr_node
|> :rpc.call(Manager.Register, :register, [self(), Node.self(), quotal])
|> case do
{:0k, pid} ->
_ = Logger.info("Connected to Manager node #{mgr_node}")

{:noreply, Map.put(state, :manager_pid, pid)}

->

Process.send_after(self(), :register, 2000)
{:noreply, state}

end
end

© Tubi, proprietary and confidential

Why Elixir/Erlang OTP?

Cluster is built-in: adding new node is simple, remote process is seamless

@spec start_link(node(), map()) :: GenServer.on_start()

def start_link(node_name, args) do
{:0k, pid} = :rpc.call(node_name, GenServer, :start, [__MODULE__, args])
Process.link(pid)

{:0k, pid}
end

© Tubi, proprietary and confidential

When a batch of content need to be processed

Processed 900+ videos in 28 hours. 700+ CPU cores running at full speed. It is 1.87 minutes for each
video processing

Overview

System Load 1 None-Normalized

/
A

\
\

\\ S w

© Tubi, proprietary and confidential

