CRDTs

From sequential to concurrent executions

Carlos Baquero

INESC TEC & Universidade do Minho, Portugal

Code Mesh London, November 8th 2018

.....

Lightweight computation for networks &t the edge sidade do Minho

The speed of communication in the 19th century

W. H. Harrison's death

“At 12:30 am on April 4th, 1841 President
William Henry Harrison died of pneumonia
just a month after taking office. The Rich-
mond Enquirer published the news of his
death two days later on April 6th. The North-
Carolina standard newspaper published it on
April 14th. His death wasn't known of in Los
Angeles until July 23rd, 110 days after it had
occurred.”

Text by Zack Bloom, A Quick History of Digital Communication Before the
Internet. https://eager.io/blog/communication-pre-internet/

Picture by By Albert Sands Southworth and Josiah Johnson Hawes

The speed of communication in the 19th century

Francis Galton Isochronic Map

A el

i A T)

SOCHRONIC PASSAGE GHART
FOR THAVERLERS,

resing Wi shor-umas smser of deses juuriny
' ;l-«hdml,ﬂ-l ﬁM"‘_"“{m_

T £ ow e e
Explanaisn of calowrs. Groen S within 10 dmye. Vollow [L i-0dnys, Finde 851 20-30 diges, Blue B 30-a0days. Brown I e thae U ders jmirsey.
Plcbliahad for tha Fracesddioge of the Harnd Owagrophcest Secece J371

The speed of communication in the 21st century
RTT data gathered via http://www.azurespeed. com

R

é bR AN

I 1 day is now about 10ms I
. m—r T
)

Explanaisn of colours. Groen S within 10 dmye. Yollow [L i0-0dnys, Binde 851 20-30 diges, Blue B 30-a0days. Brown I e thae U ders jmirsey.

Pcbliahad for tha Frocesddiogye of the Harnd Owagropacnst Secece, f371

The speed of communication in the 21st century

If you really like high latencies ...

Time delay between Mars and Earth
blo s.esa 1nt/mex/2012/08/05/t1me -delay-between-mars-and-earth/

3% Sec

sMIN _ 0Sec
T79.99 s'j;l

12 MIN_50 Sec.

Delay/Disruption Tolerant Networking

www.nasa.gov/content/dtn

Latency magnitudes

Geo-replication

m), up to 50ms (local region DC)

m A, between 100ms and 300ms (inter-continental)

No inter-DC replication

Client writes observe \ latency

Planet-wide geo-replication

Replication techniques versus client side write latency ranges

Consensus/Paxos [A, 2A] (with no divergence)
Primary-Backup [A, A] (asynchronous/lazy)
Multi-Master A (allowing divergence)

EC and CAP for Geo-Replication

Eventually Consistent. CACM 2009, Werner Vogels

m In an ideal world there would be only one consistency model:
when an update is made all observers would see that update.

m Building reliable distributed systems at a worldwide scale
demands trade-offs between consistency and availability.

CAP theorem. PODC 2000, Eric Brewer

Of three properties of shared-data systems — data consistency,
system availability, and tolerance to network partition — only two
can be achieved at any given time.

CRDTs provide support for partition-tolerant high availability

From sequential to concurrent executions

Consensus provides illusion of a single replica

This also preserves (slow) sequential behaviour

From sequential to concurrent executions

Consensus provides illusion of a single replica

This also preserves (slow) sequential behaviour

Sequential execution

Ops O o—p—>gq

Time - —————— >

We have an ordered set (0,<). O ={o0,p,q} and o< p< g

From sequential to concurrent executions

EC Multi-master (or active-active) can expose concurrency

Concurrent execution
p—=q

N
/

Time = —-——-——-——-——-——-——- >

Ops O o

Partially ordered set (O, <). o<p<g<rando<s=<r
Some ops in O are concurrent: p || sand q || s

Design of Conflict-Free Replicated Data Types

A partially ordered log (polog) of operations implements any CRDT
Replicas keep increasing local views of an evolving distributed polog

Any query, at replica 7, can be expressed from local polog O;

Design of Conflict-Free Replicated Data Types

A partially ordered log (polog) of operations implements any CRDT
Replicas keep increasing local views of an evolving distributed polog
Any query, at replica 7, can be expressed from local polog O;

Example: Counter at i is [{inc | inc € O;}| — |{dec | dec € O;}|

Design of Conflict-Free Replicated Data Types

A partially ordered log (polog) of operations implements any CRDT
Replicas keep increasing local views of an evolving distributed polog
Any query, at replica 7, can be expressed from local polog O;
Example: Counter at i is [{inc | inc € O;}| — |{dec | dec € O;}|

CRDTs are efficient representations that follow some general rules

Principle of permutation equivalence

If operations in sequence can commute, preserving a given result,
then under concurrency they should preserve the same result

Sequential

inc(10) — inc(35) — dec(5) — inc(2)
dec(5) — inc(2) — inc(10) — inc(35)

inc(35)

/ \
inc(10) inc(2)
/

S

dec(5)

You guessed: Result is 42

Implementing Counters

Example: CRDT PNCounters

A inc(35)

/ \
B inc(10) inc(2)
/

~~

C dec(5)

Lets track total number of incs and decs done at each replica

{A(incs,decs),..., C(...,...)}

Implementing Counters

Example: CRDT PNCounters

Separate positive and negative counts are kept per replica

A {A(35,0), B(10,0)}

/ \

B {B(10,0)} {A(35,0), B(12,0), C(0,5)}

\ /

C {B(10,0), €(0,5)}

Implementing Counters

Example: CRDT PNCounters

Separate positive and negative counts are kept per replica

A (A(35,0), B(10,0)}
/ \

B {B(10,0)} {A(35,0), B(12,0), C(0,5)}
\ /

C {B(10,0), C(0,5)}

Joining does point-wise maximums among entries (semilattice)

At any time, counter value is sum of incs minus sum of decs

Registers

Registers are an ordered set of write operations

Sequential execution

A wr(x) —=wr(j) — wr(k) — wr(x)

Sequential execution under distribution

A wr(x) wr(x)

~ 7

B wr(j) —= wr(k)

Register value is x, the last written value

Implementing Registers

Naive Last-Writer-Wins

CRDT register implemented by attaching local wall-clock times

Sequential execution under distribution

A (11:00)x (11:30)?

~ AN

B (12:02)j — (12:05)k ?
Problem: Wall-clock on B is one hour ahead of A

Value x might not be writeable again at A since 12:05 > 11:30

Registers

Sequential Semantics

Register shows value v at replica i iff

wr(v) € O;

and

Pwr(v') € O; - wr(v) < wr(V)

Preservation of sequential semantics

Concurrent semantics should preserve the sequential semantics

This also ensures correct sequential execution under distribution

Multi-value Registers

Concurrency semantics shows all concurrent values

{v|wr(v) € O; APwr(V') € O; - wr(v) < wr(V')}

A wr(x) —wr(y) ——————{y, k} —wr(m) — {m}

N e

B wr(j) —= wr(k)

Dynamo shopping carts are multi-value registers with payload sets

The m value could be an application level merge of values y and k

Implementing Multi-value Registers

Concurrency can be preciselly tracked with version vectors

Concurrent execution (version vectors)
A [1,0]x —[2,0ly ——— = [2,0]y, [1,2]k — [3, 2]m
B [1,1)j —[1,2]k

Metadata can be compressed with a common causal context and a
single scalar per value (dotted version vectors)

Use case: Registers in Redis CRDB

LWW arbitration

Multi-value registers allows executions leading to concurrent values
Presenting concurrent values is at odds with the sequential API
Redis CRDB both tracks causality and registers wall-clock times
Querying uses Last-Writer-Wins selection among concurrent values
This preserves correctness of sequential semantics

A value with clock 12:05 can still be causally overwritten at 11:30

Sets

Sequential Semantics

Consider add and rmv operations

X ={...}, add(a) — add(c)

Sets

Sequential Semantics

Consider add and rmv operations

X ={...}, add(a) — add(c) we observe that a,c € X

Sets

Sequential Semantics

Consider add and rmv operations

X ={...}, add(a) — add(c) we observe that a,c € X

X ={...}, add(c) — rmv(c)

Sets

Sequential Semantics

Consider add and rmv operations

X ={...}, add(a) — add(c) we observe that a,c € X

X ={...}, add(c) — rmv(c) we observe that c ¢ X

Sets

Sequential Semantics

Consider add and rmv operations

X ={...}, add(a) — add(c) we observe that a,c € X

X ={...}, add(c) — rmv(c) we observe that c ¢ X

In general, given O;, the set has elements

{e | add(e) € O; A frmv(e) € O; - add(e) < rmv(e)}

Sets

Concurrency Semantics

Problem: Concurrently adding and removing the same element

Concurrent execution

A add(x) —rmv(x) ——— {?} —add(x) — {x}

. 7

B rmv(x) — add(x)

Concurrency Semantics

Add-Wins Sets

Let's choose Add-Wins

Consider a set of known operations O;, at node /, that is ordered
by an happens-before partial order <. Set has elements

{e | add(e) € O; A7 rmv(e) € O;-add(e) < rmv(e)}

Concurrency Semantics

Add-Wins Sets

Let's choose Add-Wins

Consider a set of known operations O;, at node /, that is ordered
by an happens-before partial order <. Set has elements

{e | add(e) € O; A7 rmv(e) € O;-add(e) < rmv(e)}

Is this familiar?

Concurrency Semantics

Add-Wins Sets

Let's choose Add-Wins

Consider a set of known operations O;, at node /, that is ordered
by an happens-before partial order <. Set has elements

{e | add(e) € O; A7 rmv(e) € O;-add(e) < rmv(e)}

Is this familiar?

The sequential semantics applies identical rules on a total order

Equivalence to a sequential execution?

Add-Wins Sets

Can we always explain a concurrent execution by a sequential one?

Concurrent execution

A {xy}—add(y) —rmv(x) — {y} — {x,y}

>

B {x,y} —add(x) —rmv(y) — {x} —{x,y}

Two (failed) sequential explanations

H1 {x,y}—...—rmv(x) —{ 4y}

H?2 {x,y} —...—rmv(y) —{x, ¥}

Concurrent executions can have richer outcomes

Concurrency Semantics

Remove-Wins Sets

Alternative: Let's choose Remove-Wins

X; ={e|add(e) € O; AV rmv(e) € O;-rmv(e) < add(e)}

Concurrency Semantics

Remove-Wins Sets

Alternative: Let's choose Remove-Wins

X; ={e|add(e) € O; AV rmv(e) € O;-rmv(e) < add(e)}

Remove-Wins requires more metadata than Add-Wins
Both Add and Remove-Wins have same semantics in a total order

They are different but both preserve sequential semantics

Choice of semantics

Design freedom is limited by preservation of sequential semantics

Delaying choice of semantics to query time

A CRDT Set data type could store enough information to allow a
parametrized query that shows either Add-Wins or Remove-Wins

This flexibility might have a metadata cost

CRDTs in Practice

Implementation styles
m State-based: Full state dissemination; merging of replicas

m Alternative: Disseminate small state deltas, J-states
m States can be merged multiple times

m Operation-based: Reliable dissemination; known membership
m Operations applied only once

Infrastructure
m Datatype libraries + Dissemination/Gossip Middleware
m Databases with rich APls and CRDT merge logic

CRDTs in Practice

Use-case \ Company/Project \ CRDT model
Distributed Applications Akka 0 State-based
Distributed Applications Lasp 0 State-based
Distributed Applications Eventuate Op-based

P2P Collaborative Editing | IPFS Op-based
Distributed DB Riak State-based
Distributed DB Redis Both
Distributed DB Hazelcast State-based

Dist. DB, HAT transactions | Antidote Op-based

Take home message

m Concurrent executions are needed to deal with latency

m Behaviour changes when moving from sequential to concurrent

Road to accommodate transition:
m Permutation equivalence
m Preserving sequential semantics

m Concurrent executions lead to richer outcomes

CRDTs provide sound guidelines and encode policies

Thanks and Questions

Reference

Conflict-Free Replicated Data Types. N. Preguica, M. Shapiro, C.
Baquero. Encyclopedia of Big Data Technologies, Springer Verlag

Thanks to LightKone (https://www.lightkone.eu) for support,
Redis Labs (https://redislabs.com) for their support and
inputs on an early version, and my colleagues for early feedback

Glad to address any questions
Carlos Baquero, cbm@di.uminho.pt, ©xmal

LIGHTKONE

et

Lightweight computation for networks at the edge Universidade do Minho

