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The speed of communication in the 19th century

W. H. Harrison's death

“At 12:30 am on April 4th, 1841 President
William Henry Harrison died of pneumonia
just a month after taking office. The Rich-
mond Enquirer published the news of his
death two days later on April 6th. The North-
Carolina standard newspaper published it on
April 14th. His death wasn't known of in Los
Angeles until July 23rd, 110 days after it had
occurred.”

Text by Zack Bloom, A Quick History of Digital Communication Before the
Internet. https://eager.io/blog/communication-pre-internet/

Picture by By Albert Sands Southworth and Josiah Johnson Hawes



The speed of communication in the 19th century

Francis Galton Isochronic Map
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The speed of communication in the 21st century
RTT data gathered via http://www.azurespeed. com
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The speed of communication in the 21st century

If you really like high latencies ...

Time delay between Mars and Earth
blo s.esa 1nt/mex/2012/08/05/t1me -delay-between-mars-and-earth/

3% Sec

sMIN _ 0Sec
T79.99 s'j;l

12 MIN_50 Sec.

Delay/Disruption Tolerant Networking

www.nasa.gov/content/dtn



Latency magnitudes

Geo-replication

m ), up to 50ms (local region DC)

m A, between 100ms and 300ms (inter-continental)

No inter-DC replication

Client writes observe \ latency

Planet-wide geo-replication

Replication techniques versus client side write latency ranges

Consensus/Paxos [A, 2A] (with no divergence)
Primary-Backup [A, A] (asynchronous/lazy)
Multi-Master A (allowing divergence)



EC and CAP for Geo-Replication

Eventually Consistent. CACM 2009, Werner Vogels

m In an ideal world there would be only one consistency model:
when an update is made all observers would see that update.

m Building reliable distributed systems at a worldwide scale
demands trade-offs between consistency and availability.

CAP theorem. PODC 2000, Eric Brewer

Of three properties of shared-data systems — data consistency,
system availability, and tolerance to network partition — only two
can be achieved at any given time.

CRDTs provide support for partition-tolerant high availability



From sequential to concurrent executions

Consensus provides illusion of a single replica

This also preserves (slow) sequential behaviour



From sequential to concurrent executions

Consensus provides illusion of a single replica

This also preserves (slow) sequential behaviour

Sequential execution

Ops O o—p—>gq

Time - —————— >

We have an ordered set (0,<). O ={o0,p,q} and o< p< g



From sequential to concurrent executions

EC Multi-master (or active-active) can expose concurrency

Concurrent execution
p—=q

N
/

Time = —-——-——-——-——-——-——- >

Ops O o

Partially ordered set (O, <). o<p<g<rando<s=<r
Some ops in O are concurrent: p || sand q || s



Design of Conflict-Free Replicated Data Types

A partially ordered log (polog) of operations implements any CRDT
Replicas keep increasing local views of an evolving distributed polog

Any query, at replica 7, can be expressed from local polog O;
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Design of Conflict-Free Replicated Data Types

A partially ordered log (polog) of operations implements any CRDT
Replicas keep increasing local views of an evolving distributed polog
Any query, at replica 7, can be expressed from local polog O;
Example: Counter at i is [{inc | inc € O;}| — |{dec | dec € O;}|

CRDTs are efficient representations that follow some general rules



Principle of permutation equivalence

If operations in sequence can commute, preserving a given result,
then under concurrency they should preserve the same result

Sequential

inc(10) — inc(35) — dec(5) — inc(2)
dec(5) — inc(2) — inc(10) — inc(35)

inc(35)

/ \
inc(10) inc(2)
/

S

dec(5)

You guessed: Result is 42



Implementing Counters

Example: CRDT PNCounters

A inc(35)

/ \
B inc(10) inc(2)
/

~~

C dec(5)

Lets track total number of incs and decs done at each replica

{A(incs,decs),..., C(...,...)}



Implementing Counters

Example: CRDT PNCounters

Separate positive and negative counts are kept per replica

A {A(35,0), B(10,0)}

/ \

B {B(10,0)} {A(35,0), B(12,0), C(0,5)}

\ /

C {B(10,0), €(0,5)}



Implementing Counters

Example: CRDT PNCounters

Separate positive and negative counts are kept per replica

A (A(35,0), B(10,0)}
/ \

B {B(10,0)} {A(35,0), B(12,0), C(0,5)}
\ /

C {B(10,0), C(0,5)}

Joining does point-wise maximums among entries (semilattice)

At any time, counter value is sum of incs minus sum of decs



Registers

Registers are an ordered set of write operations

Sequential execution

A wr(x) —=wr(j) — wr(k) — wr(x)

Sequential execution under distribution

A wr(x) wr(x)

~ 7

B wr(j) —= wr(k)

Register value is x, the last written value



Implementing Registers

Naive Last-Writer-Wins

CRDT register implemented by attaching local wall-clock times

Sequential execution under distribution

A (11:00)x (11:30)?

~ AN

B (12:02)j — (12:05)k ?
Problem: Wall-clock on B is one hour ahead of A

Value x might not be writeable again at A since 12:05 > 11:30



Registers

Sequential Semantics

Register shows value v at replica i iff

wr(v) € O;

and

Pwr(v') € O; - wr(v) < wr(V)



Preservation of sequential semantics

Concurrent semantics should preserve the sequential semantics

This also ensures correct sequential execution under distribution



Multi-value Registers

Concurrency semantics shows all concurrent values

{v|wr(v) € O; APwr(V') € O; - wr(v) < wr(V')}

A wr(x) —wr(y) ——————{y, k} —wr(m) — {m}

N e

B wr(j) —= wr(k)

Dynamo shopping carts are multi-value registers with payload sets

The m value could be an application level merge of values y and k



Implementing Multi-value Registers

Concurrency can be preciselly tracked with version vectors

Concurrent execution (version vectors)
A [1,0]x —[2,0ly ——— = [2,0]y, [1,2]k — [3, 2]m
B [1,1)j —[1,2]k

Metadata can be compressed with a common causal context and a
single scalar per value (dotted version vectors)



Use case: Registers in Redis CRDB

LWW arbitration

Multi-value registers allows executions leading to concurrent values
Presenting concurrent values is at odds with the sequential API
Redis CRDB both tracks causality and registers wall-clock times
Querying uses Last-Writer-Wins selection among concurrent values
This preserves correctness of sequential semantics

A value with clock 12:05 can still be causally overwritten at 11:30



Sets

Sequential Semantics

Consider add and rmv operations

X ={...}, add(a) — add(c)
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Consider add and rmv operations
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Sets

Sequential Semantics

Consider add and rmv operations

X ={...}, add(a) — add(c) we observe that a,c € X

X ={...}, add(c) — rmv(c) we observe that c ¢ X

In general, given O;, the set has elements

{e | add(e) € O; A frmv(e) € O; - add(e) < rmv(e)}



Sets

Concurrency Semantics

Problem: Concurrently adding and removing the same element

Concurrent execution

A add(x) —rmv(x) ——— {?} —add(x) — {x}

. 7

B rmv(x) — add(x)




Concurrency Semantics

Add-Wins Sets

Let's choose Add-Wins

Consider a set of known operations O;, at node /, that is ordered
by an happens-before partial order <. Set has elements

{e | add(e) € O; A7 rmv(e) € O;-add(e) < rmv(e)}
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Concurrency Semantics

Add-Wins Sets

Let's choose Add-Wins

Consider a set of known operations O;, at node /, that is ordered
by an happens-before partial order <. Set has elements

{e | add(e) € O; A7 rmv(e) € O;-add(e) < rmv(e)}

Is this familiar?

The sequential semantics applies identical rules on a total order



Equivalence to a sequential execution?

Add-Wins Sets

Can we always explain a concurrent execution by a sequential one?

Concurrent execution

A {xy}—add(y) —rmv(x) — {y} — {x,y}

>

B {x,y} —add(x) —rmv(y) — {x} —{x,y}

Two (failed) sequential explanations

H1 {x,y}—...—rmv(x) —{ 4y}

H?2 {x,y} —...—rmv(y) —{x, ¥}

Concurrent executions can have richer outcomes



Concurrency Semantics

Remove-Wins Sets

Alternative: Let's choose Remove-Wins

X; ={e|add(e) € O; AV rmv(e) € O;-rmv(e) < add(e)}



Concurrency Semantics

Remove-Wins Sets

Alternative: Let's choose Remove-Wins

X; ={e|add(e) € O; AV rmv(e) € O;-rmv(e) < add(e)}

Remove-Wins requires more metadata than Add-Wins
Both Add and Remove-Wins have same semantics in a total order

They are different but both preserve sequential semantics



Choice of semantics

Design freedom is limited by preservation of sequential semantics

Delaying choice of semantics to query time

A CRDT Set data type could store enough information to allow a
parametrized query that shows either Add-Wins or Remove-Wins

This flexibility might have a metadata cost



CRDTs in Practice

Implementation styles
m State-based: Full state dissemination; merging of replicas

m Alternative: Disseminate small state deltas, J-states
m States can be merged multiple times

m Operation-based: Reliable dissemination; known membership
m Operations applied only once

Infrastructure
m Datatype libraries + Dissemination/Gossip Middleware
m Databases with rich APls and CRDT merge logic



CRDTs in Practice

Use-case \ Company/Project \ CRDT model
Distributed Applications Akka 0 State-based
Distributed Applications Lasp 0 State-based
Distributed Applications Eventuate Op-based

P2P Collaborative Editing | IPFS Op-based
Distributed DB Riak State-based
Distributed DB Redis Both
Distributed DB Hazelcast State-based

Dist. DB, HAT transactions | Antidote Op-based




Take home message

m Concurrent executions are needed to deal with latency

m Behaviour changes when moving from sequential to concurrent

Road to accommodate transition:
m Permutation equivalence
m Preserving sequential semantics

m Concurrent executions lead to richer outcomes

CRDTs provide sound guidelines and encode policies



Thanks and Questions

Reference

Conflict-Free Replicated Data Types. N. Preguica, M. Shapiro, C.
Baquero. Encyclopedia of Big Data Technologies, Springer Verlag

Thanks to LightKone (https://www.lightkone.eu) for support,
Redis Labs (https://redislabs.com) for their support and
inputs on an early version, and my colleagues for early feedback

Glad to address any questions
Carlos Baquero, cbm@di.uminho.pt, ©xmal
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